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Climate simulations (KNMI)

Dutch Challenge Project (2004) to
assess climate change impact: frequency
of precipitation, drought, storms, etc.

Temperatuur in roosterpunt De Bilt
14

Global climate model (atmos., ocean,
ice, land, insolation, chemistry)

Simulation time 140 yrs., IC Jan. |, 1940

Ensemble simulations: 64 independent
runs. Uniform random scaling of
atmospheric temp in [0.999, 1.001]

Numerical errors in the first hour
exceed this perturbation.

Temperatuur [Celsius)
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Numerical errors overwhelm the
computation in the first month.
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Liouville equation, invariant
measure, and sampling

w\m ODE 4~ (x)

phase flow operator X(¢) = ¢:(Xy)
@ Probability density p(X, )
on (a set A(t)) in phase space

Liouville equation governs
transport of probability: Ergodicity implies a unique

Op=Lp=—-Vx-pf invariant measure:

Lp=0
Almost every solution
samples this measure: X (t) ~ 0



Prediction types (Lorenz)

® Prediction of the first kind: out-of-
equilibrium transport of a probability
ensemble

&R

Prediction of the second kind:
parameter study using equilibrium
sampling
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Nature Climate
Feedback Blog Entry
(June 4, 2007)

Kevin Trenberth
Climate Analysis
Section

National Center of

Atmospheric Research,
USA,

Lead Author, IPCC
Reports
1995, 2001, 2007.

IPCC currently uses 2nd-kind Projections:

“... the projections are based on model results that provide differences of the future climate
relative to that today ...

The current projection method works to the extent it does because it utilizes differences from one
time to another and the main model bias and systematic errors are thereby subtracted out. This
assumes linearity ...”

IPCC wants to go to 1st-kind Predictions, but one important obstacle is
overcoming numerical bias:

“... the science is not done because we do not have reliable or regional predictions of climate. But
we need them. So the science is just beginning. Beginning, that is, to face up to the challenge of
building a climate information system that tracks the current climate and the agents of change,
that initializes models and makes predictions, and that provides useful climate information on many
time scales regionally and tailored to many sectoral needs...

Of course one can initialize a climate model, but a biased model will immediately drift back to the
model climate and the predicted trends will then be wrong. Therefore the problem of overcoming
this shortcoming, and facing up to initializing climate models means not only obtaining sufficient
reliable observations of all aspects of the climate system, but also overcoming model biases.”



Geometric numerical integration

® Numerical errors not small and random: the discrete flow
solves a different problem with its own statistics.

® Geometric integration: exactly preserve symmetries,
invariants, group structures. [hese influence statistics.

® Example: Symplectic methods generate the exact solution of
a perturbed Hamiltonian system (phase volume, energy).



Outline

® Part | - Statistical mechanics of geophysical
fluids, and numerical methods that sample
well.

® Part |l - A statistically consistent approach
to model reduction.

- Any truncation is model reduction from infinite to finite d.o.f.

- Part | - how to truncate such that equilibrium stat. mech. is
preserved

- Part Il - accept the truncation, and ask how we can correct
statistics



Geophysical fluid dynamics

The atmosphere is well approximated by a fluid that is:
e inviscid (Re’! = 10-® viscosity)
* 2D (10 km vertical vs. |000-10000 km horizontal scale)
* incompressible (only approximate in 2D)

A particularly simple model is the quasigeostrophic potential vorticity
model (QG).

V- ulz,t)=0, veER? z€D
dg _ Jg
dt  dt
q(z,t) =V x u(z,t) + h(x)

Stream function formulation: (u = V1)

¢ +V+ty-Vg=0,  Ap=q—h



Geophysical fluid dynamics

The QG model is a Hamiltonian PDE with Poisson structure
and energy functional

{Flgl, Ola]} = / fs—j (qudy — qyﬁx)% i
1

’Md=—§/w@—hmx

The equations of motion are generated by the Hamiltonian in
the Poisson bracket

¢ = {q, Hlql}

Infinite family of Casimir functionals {-,C|g|} =0

i.e. the moments of vorticity:

C(f)la) = / 7(q) da Culd] = / o d



Geophysical fluid dynamics

The Casimirs

C(f)la) = / f)de  Cilgl = / o d

are a consequence of area preservation:

or

o =0, T(0.t) = meas{z € D|q(a,1) < 0}

( ) - 1 dF €¢ f h”
o) = 15y g, “area of vortex patc

Each “patch” of vorticity evolves at constant
area under the energy-preserving flow




Equilibrium statistical mechanics of fluids”

Invariant measure: a Young measure on the space of vorticity fields
p(x,0) = Prob{q(z) € [0,0 + do]}
. /p(:v,a)dazl, vz
. / p(z,0)dz = (c), area preservation

Mean field assumption: distinct points in the domain are coupled only
via a mean field

(q) = / op(e,0)do, A@) = (g) —h

Miller-Robert-Sommeria measure:

p(z, o) ox e~ B¥lo—a(@) (: 6—5<¢>0H(0-))

Mean field relation:

* Kraichnan 75, Salmon et al. 76, Carnevale & Frederiksen 87, Miller 91, Miller,Weichman & Cross
92, Robert 91, Robert & Sommeria 91, Ellis, Haven & Turkington 02, Majda & Wang 2006



Numerical discretizations

If a numerical method is to have any hope of reproducing even the mean
equilibrium statistics it should conserve:

- volume (phase space sense: Liouville)
- energy (quadratic)
- vorticity + moments

* Galerkin methods (FEM and spectral) & Arakawa FD schemes
conserve volume, energy and enstrophy (C; quadratic moment of q)

* A method of Mclachlan ("99) preserves all Casimirs by permuting
the discrete vorticity field (but not energy!)

* Sine-bracket truncation (Zeitlin ‘91) conserves volume, energy,and N
Casimirs on an NxN grid

¢ Hamiltonian Particle-Mesh method



Hamiltonian Particle-Mesh Method”

A set of K discrete particles with lumped vorticity (circulation)

(Xe(t) €R2, Qu(t) = Qu(0); k=0,... K}

Coarse-grain vorticity on a uniform grid obtained by summing
the overlapping particle distributions

qi = ZQ/M(%‘ — Xk(t)), Ay =g —h;
k

: : : : 1
Hamiltonian dynamics with H(X;,... Xx) = -5 > Ui(g; — hy)

QrXp = JEL, T=[94¢]

Time integration with a symplectic integrator (implicit midpoint)

* Developed in the context of SWEs: [F, Gottwald & Reich 02, F. & Reich 03, Cotter &
Reich 03 04 06, Cotter, F. & Reich 04]



Coarse-grain PV conservation

Potential vorticity trivially conserved on particles, hence all Casimirs.

On the other hand the grid-based vorticity moments typically exhibit

significant drift:

The only coarse-grain conserved

quantities are the energy
1
H=-3 Z‘If@(% — h;)

and circulation

C1 ZZ%

Is the PV/area conservation
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Numervrical results

* Problem setup of Abramov & Majda (2003)
h(x,y) =0.2cosx +0.4cos2x, E =7, Cy=20

* Computer time average over an interval 10°,T), for T = 10°

1 _ 1
g n - o NpAt=T —10°
qr NT;Q’ wT NT;w’ T

* Assuming sufficient ergodicity,

lim gr = (¢), lim Y = (V)

T'— o0 T'— o0



Mean fields for Arakawa ’66 schemes

* Comparison of classical schemes by Arakawa 66 conserving discrete
approximations of energy (E), enstrophy (C), or both (EC). T = 10°

EC E C

* Only quadratic invariants conserved = Gaussian statistics

* Linear mean-field relations = 1D flow (q) = g((v)), Vx

* Very distinct statistics! (Dubinkina & Frank 2007)



Sine-bracket Poisson integrator

® Abramov & Majda (2003) used Zeitlin’s (1991) Poisson truncation of the
ideal fluid, which preserves N+1 integrals on an NxN grid, to study the
statistical relevance of the higher moments of vorticity

® A nonzero third moment Cs3 is “statistically relevant”

® Experimental setup suggests that higher moments could be irrelevant
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Fig. 3. The scatter plots g vs. § for the 23 X 23 sine-bracket truncation, layered topography, €3 = 0, 2, 4, 6.
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Fig. 4. The contour plots of the mean stream function, 23 X 23 sine-bracket truncation, layered topography, ¢;=0,246.



Skew and Flat distributions - HPM

Draw the vorticity from

Qr ~ 11(0)

with skewness

V= s
Cy'” :
or excess kurtosis (no skew.)
Cy
0=—5 —3
C3

We derived and compare with

Lagrangian and Eulerian .

analytical models.

Comparison with time
averaged loci. T = 104,

I 0

Fourth moment Cy is statistically
relevant, for large 0.
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Reservoir of unresolved dynamics

O Exchange with
i o O ' /Reservoir
Grid-based ‘
model b
SNEEEEEEEEEEEEEE Exchange with
Reservoir
Truncated ) .
wave number
spectral model
Particle/point-

vortex model

Exchange with
Reservoir




Model reduction with thermostats
specific model: point vortex system

* Singular point vorticity field
* Heterogeneous: +/- orientation, strong/weak
* Reduce to only strong vortices, preserve their statistics

* Weak vortices = reservoir (canonical ensemble)

(Dubinkina, Frank & Leimkuhler 2010)



Point Vortex Model

A point vortex model for N vortices in a cylinder

1
H=— ' .Firj In(|r; — ;%)
1<

+ boundary terms

Ly = JV, H

q(z,t) =) Tib(x —ri(t))
' H unbounded under

Ap(x,t) :ZQ(CI% t) collisions
u(z,t) = V=ip(a, t)

Onsager, 1949 “Statistical Hydrodynamics”
Oliver Buhler, 2002 canonical theory & numerics



Statistical Mechanics

Onsager, 1949 “Statistical Hydrodynamics”

Unbounded energy range, bounded phase space gives
rise to positive and negative temperature states.

1
H=—— 0,0, In(|r; —rs|?
4 = i In( il") Entropy S(E) = In{
Inverse Stat. Temp. 8 = S'(F)
QE) = vol{ X | H(X) € [E, E + dE)}
density of states t g Temperature inversely
| ,8"’ O proportional to slope.
B | E |Col.
B>0|E<O| +/-

E




Onsager (1949) proposed for a heterogeneous point vortex

flow: strong vortices cluster:
Positive temperature: opposite signhed,
Negative temperature: like-signed,
weak ones behave randomly

Simulations by Oliver Buhler (2002)

4 strong, 96 weak vortices, sign indefinite, 0 ang.
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Canonical ensemble

The canonical ensemble is the invariant (Gibbs) measure

describing a system in thermal equilibrium with an infinite
reservoir (heat bath):

p(X) o exp(—BH (X))

To compare with Buhler’s simulations which were done with a
modest number (96) of weak vortices, we must include an
additional term in the measure:

p(X) x exp(—BH(X) — vH(X))

Parameters depend on the full model:

E 1 3



Canonical sampling

Volume and energy preserving model
X = f(X), V-f=0, f-VH =0
samples (if ergodic) the microcanonical ensemble:
p(X) o §(H(X) — Ho)

For a system in thermal equilibrium with a reservoir at

temperature 3-', energy is exchanged. Finite reservoir
ensemble:

p(X) o exp(—BH(X) — vH(X)?)

Need a mechanism to perturb the dynamics.



Nosé thermostat (molecular dynamics)

ldea of Nose (1984), Hoover(1985):

¢ = M 'p
p = —VVig)—Cp
¢ = fBp-M 'p—K

Total energy of subsystem

H=:p-M 'p+V(g)

New variable controls the energy flux

dH

e — _(p- M1
- §e p

Alternative to Langevin dynamics:

X =JVH(X) - §ZETVH +IW



Generalized thermostats

Augmented system: Desired distribution:
X = f(X)+¢g(X) p(X) oc D
¢ = hX)

Require the product distribution
(X, () o eFHX)) = 5¢

to be stationary under the Liouville flow

L5=0 = V- p(f+Cg)+ 0cph
= (Vx-pg+hocp
= p[(Vx - g+ (F'(H)g  VxH — ah]
hX) = o ' [Vx-g+F(H)g-VxH]




Ergodicity

We add noise and dissipation to the thermostat variable only
X = f(X)+¢g(X)
( = h(X)—-(+V2/aw

For ergodicity we also need (Hormander condition)

R C span{f.g,[f,q],[f,[f. gl 9. [f.ql], .}



Experimental parameters
B

8 € {—0.006, —0.00055,0.01} v = Eo € {628,221, —197}

2Fq

a=0.>5, oc=v04

t € [1500, 12000]
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Statistics of strong vortices
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Vortex clustering, N=12

Vortices Stream function Lnergy
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sSummary

Numerical bias is an obstacle to accurate statistical prediction of
the first and second kinds.

Numerical schemes should minimally conserve phase-space
volume and energy.

For ideal fluids, vorticity conservation is significant. Standard
methods limited to Gaussian statistics. Lagrangian methods offer
most flexibility here.

Approach to model reduction:

» Start with a high resolution discretization

* Partition into resolved dynamics + ‘reservoir’

* Derive canonical ensemble for the resolved variables

* Apply thermostat to model energy exchange with reservoir



Thank you for your attention.

S. Dubinkina & |. Frank, "Statistical mechanics of Arakawa's
discretizations", |. Comput. Phys. 227 (2007) 1286—1305.

S. Dubinkina and J. Frank, "Statistical relevance of vorticity conservation
with the Hamiltonian particle-mesh method", . Comput. Phys. 229 (2010)
2634-2648.

S. Dubinkina, J. Frank, and B. Leimkuhler, "Simplified Modelling of a Thermal
Bath, with Application to a Fluid Vortex System"”, SIAM Multiscale Model.
Simul. 8 (2010) 1882—-1901.


http://dx.doi.org/10.1016/j.jcp.2007.09.002
http://dx.doi.org/10.1016/j.jcp.2007.09.002
http://dx.doi.org/10.1016/j.jcp.2007.09.002
http://dx.doi.org/10.1016/j.jcp.2007.09.002
http://dx.doi.org/10.1016/j.jcp.2009.12.012
http://dx.doi.org/10.1016/j.jcp.2009.12.012
http://dx.doi.org/10.1016/j.jcp.2009.12.012
http://dx.doi.org/10.1016/j.jcp.2009.12.012
http://dx.doi.org/10.1137/100795152
http://dx.doi.org/10.1137/100795152
http://dx.doi.org/10.1137/100795152
http://dx.doi.org/10.1137/100795152

