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Relative stability regions

Order and stability

In the solution of stiff problems there are many aims such as

High order
Good stability
Economical implementation

These attributes are not independent and there may be a conflict between
them.

Order arrows are a tool for exploring restrictions on order for methods that are
required to be A-stable.
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Three Runge–Kutta methods

I would like to talk about three special methods which I will call Eu,
Im andTh.

0 0

1
(Eu)

1 1

1
(Im)

0 1
6 −4

3
7
6

1
2

1
6

2
3 −1

3

1 1
6

2
3

1
6

1
6

2
3

1
6

(Th)

Eu is the Euler method,
Im is the Implicit Euler method and
Th is a Third order implicit Runge–Kutta method
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The stability functions for the three methods are

R(z) = 1+z = exp(z)− 1
2z2 +O(z3) (Eu)

R(z) =
1

1−z
= exp(z)+ 1

2z2 +O(z3) (Im)

R(z) =
1

1−z+ 1
2z2− 1

6z3
= exp(z)+ 1

24z4 +O(z5) (Th)
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The stability functions for the three methods are

R(z) = 1+z = exp(z)− 1
2z2 +O(z3) (Eu)

R(z) =
1

1−z
= exp(z)+ 1

2z2 +O(z3) (Im)

R(z) =
1

1−z+ 1
2z2− 1

6z3
= exp(z)+ 1

24z4 +O(z5) (Th)

and the stability regions are

Eu Im Th
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The Euler method has very poor stability and it should not be used
with stiff problems.

The Implicit Euler method is A-stable and it can safely be used with
most stiff problems.

The special third order method is not A-stable but it is A(α)-stable
with α ≈ 88◦.

For many problems, such as pure diffusion problems, the special third
order method will be completely satisfactory.

However, in this talk, we are interested in A-stability alone and the
competition this property has with the order of methods.
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Relative stability regions

The “instability region” associated with a stability function R(z) is the
set of points in the complex plane such that

|R(z)| > 1.
Therelative instability region is the set such that

|exp(−z)R(z)| > 1.
The stability region and the relative stability regions aredefined in a
similar way but with> replaced by<.

The relative instability region is known as the “order star”and the
relative stability region is known as the dual order star.

These, and the closely related “order arrows”, are introduced in the
next section for theIm andTh methods.

Just as order stars are defined in terms of|exp(−z)R(z)|, order arrows
are defined as the paths traced out by the points for which exp(−z)R(z)
is real and positive.
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Properties of order arrows

Example: 1 theIm method (order star)

Note the behaviour near zero:
becauseR(z)exp(−z)=1+ 1

2z2+O(z3),
the dashed red lines are tangent to the order star boundary atzero and the
angle between these tangents is exactlyπ/2.
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Example: 1 theIm method (order star)

Note the behaviour near zero:
becauseR(z)exp(−z)=1+ 1

2z2+O(z3),
the dashed red lines are tangent to the order star boundary atzero and the
angle between these tangents is exactlyπ/2.

Note also the existence of a pole in the “bounded finger”
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Example 1: theIm method (order arrows)

Note the behaviour near zero:
becauseR(z)exp(−z)= 1+1

2z2+O(z3), the dashed red lines are tangent to the
order arrows at zero and the angle between these tangents is exactly π/2.
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Example 1: theIm method (order arrows)

Note the behaviour near zero:
becauseR(z)exp(−z)= 1+1

2z2+O(z3), the dashed red lines are tangent to the
order arrows at zero and the angle between these tangents is exactly π/2.

Up-arrows (increasing values ofR(z)e−z) alternate with down-arrows.
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Example 1: theIm method (order arrows)

Note the behaviour near zero:
becauseR(z)exp(−z)= 1+1

2z2+O(z3), the dashed red lines are tangent to the
order arrows at zero and the angle between these tangents is exactly π/2.

Up-arrows (increasing values ofR(z)e−z) alternate with down-arrows.

Note the existence of a pole as the termination point of an up-arrow.
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Fingers subtend anglesπ/4 at 0 because exp(−z)R(z)≈1+ 1
24z4.
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24z4.
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Example 2: theTh method (order star)

Fingers subtend anglesπ/4 at 0 because exp(−z)R(z)≈1+ 1
24z4.

Bounded fingers contain poles.

Fingers overlap imaginary axis. Hence the method is not A-stable.
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Example 2: theTh method (order arrows)

Anglesπ/4 between arrows at 0, because exp(−z)R(z)≈1+ 1
24z4.

Poles are at the ends of up-arrows from 0.

There is an up-arrow tangential to the imaginary axis.
Hence the method is not A-stable.
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Example 1: the implicit Euler method
Example 2: a third order implicit method
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Properties of order arrows

Order Stars were introduced in the classic 1978 paper1 and are the
subject of a 1991 monograph2.

Order arrows have related properties such as

Up-arrows from zero terminate at poles or at−∞
Down-arrows from zero terminate at zeros or at+∞
There is an arrow from zero in the direction of the positive real
axis (up- or down- depending on the sign of the error constant)

For an orderp approximation, there arep+1 down-arrows from
zero alternating withp+1 up-arrows from zero

The angle between one arrow from zero and the next isπ/(p+1)

1Wanner G., Hairer E. and Nørsett S. P., Order stars and stability theorems, BIT
18 (1978), 475–489

2Iserles A. and Nørsett S. P., Order Stars, Chapman & Hall, (1991)
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Down-arrows from zero terminate at zeros or at+∞
There is an arrow from zero in the direction of the positive real
axis (up- or down- depending on the sign of the error constant)

For an orderp approximation, there arep+1 down-arrows from
zero alternating withp+1 up-arrows from zero

The angle between one arrow from zero and the next isπ/(p+1)
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Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

If R(z) is an A-function (the stability function of an A-stable method),
then we can make further statements

Theorem

Let R(z) be an A-function then
1 exp(−z)R(z) has no poles in the left half-plane.
2 No up-arrow from zero can be tangential to the imaginary axis.
3 No up-arrow from zero can cross the imaginary axis.

These properties follow from similar facts aboutR(z) and the
observation that multiplication by exp(−z) does not affect the poles or
the behaviour of|R(z)| on the imaginary axis.
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If R(z) is an A-function (the stability function of an A-stable method),
then we can make further statements

Theorem

Let R(z) be an A-function then
1 exp(−z)R(z) has no poles in the left half-plane.
2 No up-arrow from zero can be tangential to the imaginary axis.
3 No up-arrow from zero can cross the imaginary axis.

These properties follow from similar facts aboutR(z) and the
observation that multiplication by exp(−z) does not affect the poles or
the behaviour of|R(z)| on the imaginary axis.

0 5 10 15 20 25
49



Introduction
Order stars and order arrows

Applications
Drawing pictures

Gallery

Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

If R(z) is an A-function (the stability function of an A-stable method),
then we can make further statements

Theorem

Let R(z) be an A-function then
1 exp(−z)R(z) has no poles in the left half-plane.
2 No up-arrow from zero can be tangential to the imaginary axis.
3 No up-arrow from zero can cross the imaginary axis.

These properties follow from similar facts aboutR(z) and the
observation that multiplication by exp(−z) does not affect the poles or
the behaviour of|R(z)| on the imaginary axis.
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Example 1: the implicit Euler method
Example 2: a third order implicit method
Properties of order arrows

If R(z) is an A-function (the stability function of an A-stable method),
then we can make further statements

Theorem

Let R(z) be an A-function then
1 exp(−z)R(z) has no poles in the left half-plane.
2 No up-arrow from zero can be tangential to the imaginary axis.
3 No up-arrow from zero can cross the imaginary axis.

These properties follow from similar facts aboutR(z) and the
observation that multiplication by exp(−z) does not affect the poles or
the behaviour of|R(z)| on the imaginary axis.
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The Ehle “conjecture”
The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

1 Introduction

Order and stability

Three Runge–Kutta methods

Relative stability regions
2 Order stars and order arrows

Example 1: the implicit Euler method

Example 2: a third order implicit method

Properties of order arrows
3 Applications

The Ehle “conjecture”

The Daniel-Moore “conjecture”

The Butcher-Chipman conjecture
4 Drawing pictures

Why arrow pictures are hard to draw

Why arrow pictures are easy to draw

A differential equation for order arrows
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The Ehle “conjecture”
The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

The Ehle “conjecture”

A Padé approximation is a rational functionR(z) = N(z)/D(z) such that
R(z) = exp(z)+O(|z|p+1),

where the order isp = n+d, with n = deg(N) andd = deg(D).
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The Ehle “conjecture”

A Padé approximation is a rational functionR(z) = N(z)/D(z) such that
R(z) = exp(z)+O(|z|p+1),

where the order isp = n+d, with n = deg(N) andd = deg(D).

Some Padé approximations correspond to A-stable numerical methods and
some don’t. See the table:
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The Ehle “conjecture”

A Padé approximation is a rational functionR(z) = N(z)/D(z) such that
R(z) = exp(z)+O(|z|p+1),

where the order isp = n+d, with n = deg(N) andd = deg(D).

Some Padé approximations correspond to A-stable numerical methods and
some don’t. See the table:

d
n 0 1 2 3 4 5

0 1 1+z 1+z+ 1
2z2

1 1
1−z

1+ 1
2z

1− 1
2z

1+ 2
3z+ 1

6z2

1− 1
3z

2 1
1−z+ 1

2z2

1+ 1
3z

1− 2
3z+ 1

6z2

1+ 1
2z+ 1

12z2

1− 1
2z+ 1

12z2

3 1
1−z+ 1

2z2− 1
6z3

1+ 1
4z

1− 3
4z+ 1

4z2− 1
24z3

1+ 2
5z+ 1

20z2

1− 3
5z+ 3

20z2− 1
60z3

4

5
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The Ehle “conjecture”

A Padé approximation is a rational functionR(z) = N(z)/D(z) such that
R(z) = exp(z)+O(|z|p+1),

where the order isp = n+d, with n = deg(N) andd = deg(D).

Some Padé approximations correspond to A-stable numerical methods and
some don’t. See the table:

d
n 0 1 2 3 4 5

0 1 1+z 1+z+ 1
2z2

1 1
1−z

1+ 1
2z

1− 1
2z

1+ 2
3z+ 1

6z2

1− 1
3z

2 1
1−z+ 1

2z2

1+ 1
3z

1− 2
3z+ 1

6z2

1+ 1
2z+ 1

12z2

1− 1
2z+ 1

12z2

3 1
1−z+ 1

2z2− 1
6z3

1+ 1
4z

1− 3
4z+ 1

4z2− 1
24z3

1+ 2
5z+ 1

20z2

1− 3
5z+ 3

20z2− 1
60z3

4

5

Byron Ehle conjectured that A-stability impliesd≤ n+2.
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The Butcher-Chipman conjecture

Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

0 5 10 15 20 25
57



Introduction
Order stars and order arrows

Applications
Drawing pictures

Gallery

The Ehle “conjecture”
The Daniel-Moore “conjecture”
The Butcher-Chipman conjecture

Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
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The Ehle “conjecture”
The Daniel-Moore “conjecture”
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Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
(1) Let ñ be the number of down-arrows terminating at
zeros.
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Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
(1) Let ñ be the number of down-arrows terminating at
zeros.
(2) Let d̃ be the number of up-arrows terminating at
poles.
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Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
(1) Let ñ be the number of down-arrows terminating at
zeros.
(2) Let d̃ be the number of up-arrows terminating at
poles.
(3) From (1), 1+ n+ d− ñ down-arrows terminate at
+∞.
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Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
(1) Let ñ be the number of down-arrows terminating at
zeros.
(2) Let d̃ be the number of up-arrows terminating at
poles.
(3) From (1), 1+ n+ d− ñ down-arrows terminate at
+∞.
(4) Because down-arrows and up-arrows cannot cross there are at least
n+d− ñ up-arrows terminating at poles.
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Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
(1) Let ñ be the number of down-arrows terminating at
zeros.
(2) Let d̃ be the number of up-arrows terminating at
poles.
(3) From (1), 1+ n+ d− ñ down-arrows terminate at
+∞.
(4) Because down-arrows and up-arrows cannot cross there are at least
n+d− ñ up-arrows terminating at poles.
(5) From (2) and (4),n+d− ñ≤ d̃.
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Theorem

Let R(z) = N(z)/D(z) be an[d,n] approximation with order p= n+d.
Then each of the poles and each of the zeros is a terminal pointof an
arrow from zero.

This result is illustrated in the case[d,n] = [3,2].
(1) Let ñ be the number of down-arrows terminating at
zeros.
(2) Let d̃ be the number of up-arrows terminating at
poles.
(3) From (1), 1+ n+ d− ñ down-arrows terminate at
+∞.
(4) Because down-arrows and up-arrows cannot cross there are at least
n+d− ñ up-arrows terminating at poles.
(5) From (2) and (4),n+d− ñ≤ d̃.
Hence the sum of the two non-negative integersn− ñ andd− d̃ is
non-positive. Thereforẽn = n andd̃ = d.
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Theorem (Hairer-Nørsett-Wanner Theorem)

A [d,n] Pad́e approximation is an A-function only if

d−n≤ 2.

Let Θ be the set of angles in(−π,π] at which an up-arrow leaves zero
and terminates at a pole.

Because successive members ofΘ differ by at least 2π/(n+d+1), it
follows that

max(Θ)−min(Θ) ≥ 2π(d−1)

n+d+1
.

This angle must be less thanπ, otherwise there will be up-arrows from
zero which do one of the following

1 are tangential to the imaginary axis,
2 terminate at a pole in the left half-plane
3 cross back over the imaginary axis to the right half-plane.

The last two of these options are illustrated on the next slide.
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Theorem (Hairer-Nørsett-Wanner Theorem)

A [d,n] Pad́e approximation is an A-function only if

d−n≤ 2.

Let Θ be the set of angles in(−π,π] at which an up-arrow leaves zero
and terminates at a pole.

Because successive members ofΘ differ by at least 2π/(n+d+1), it
follows that

max(Θ)−min(Θ) ≥ 2π(d−1)

n+d+1
.

This angle must be less thanπ, otherwise there will be up-arrows from
zero which do one of the following

1 are tangential to the imaginary axis,
2 terminate at a pole in the left half-plane
3 cross back over the imaginary axis to the right half-plane.

The last two of these options are illustrated on the next slide.
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Theorem (Hairer-Nørsett-Wanner Theorem)

A [d,n] Pad́e approximation is an A-function only if

d−n≤ 2.

Let Θ be the set of angles in(−π,π] at which an up-arrow leaves zero
and terminates at a pole.

Because successive members ofΘ differ by at least 2π/(n+d+1), it
follows that

max(Θ)−min(Θ) ≥ 2π(d−1)

n+d+1
.

This angle must be less thanπ, otherwise there will be up-arrows from
zero which do one of the following

1 are tangential to the imaginary axis,
2 terminate at a pole in the left half-plane
3 cross back over the imaginary axis to the right half-plane.

The last two of these options are illustrated on the next slide.
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Theorem (Hairer-Nørsett-Wanner Theorem)

A [d,n] Pad́e approximation is an A-function only if

d−n≤ 2.

Let Θ be the set of angles in(−π,π] at which an up-arrow leaves zero
and terminates at a pole.

Because successive members ofΘ differ by at least 2π/(n+d+1), it
follows that

max(Θ)−min(Θ) ≥ 2π(d−1)

n+d+1
.

This angle must be less thanπ, otherwise there will be up-arrows from
zero which do one of the following

1 are tangential to the imaginary axis,
2 terminate at a pole in the left half-plane
3 cross back over the imaginary axis to the right half-plane.

The last two of these options are illustrated on the next slide.
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Theorem (Hairer-Nørsett-Wanner Theorem)

A [d,n] Pad́e approximation is an A-function only if

d−n≤ 2.

Let Θ be the set of angles in(−π,π] at which an up-arrow leaves zero
and terminates at a pole.

Because successive members ofΘ differ by at least 2π/(n+d+1), it
follows that

max(Θ)−min(Θ) ≥ 2π(d−1)

n+d+1
.

This angle must be less thanπ, otherwise there will be up-arrows from
zero which do one of the following

1 are tangential to the imaginary axis,
2 terminate at a pole in the left half-plane
3 cross back over the imaginary axis to the right half-plane.

The last two of these options are illustrated on the next slide.
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2πp+
1
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2πp+
1
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2πp+
1

Since
2π(d−1)

n+d+1
< π,

we deduce that
d−n < 3.
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The Daniel-Moore “conjecture”

This former conjecture was first proved using order stars in [1], but
today I will outline an order arrow proof.

It concerns a more general type of approximation, in whichR(z) is
replaced by a solution to a polynomial equation

Φ(w,z) = wmP0(z)+wm−1P1(z)+ · · ·+Pm(z) = 0,
and the degrees ofP0,P1, . . . ,Pm are[d0,d1, . . . ,dm].

Order arrows now live on a Riemann surface

Theorem

A multivalue approximation with degree vector[d0,d1, . . . ,dm] is an
A-function only if

p≤ 2d0.
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The Daniel-Moore “conjecture”

This former conjecture was first proved using order stars in [1], but
today I will outline an order arrow proof.

It concerns a more general type of approximation, in whichR(z) is
replaced by a solution to a polynomial equation

Φ(w,z) = wmP0(z)+wm−1P1(z)+ · · ·+Pm(z) = 0,
and the degrees ofP0,P1, . . . ,Pm are[d0,d1, . . . ,dm].

Order arrows now live on a Riemann surface

Theorem

A multivalue approximation with degree vector[d0,d1, . . . ,dm] is an
A-function only if

p≤ 2d0.
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The Daniel-Moore “conjecture”

This former conjecture was first proved using order stars in [1], but
today I will outline an order arrow proof.

It concerns a more general type of approximation, in whichR(z) is
replaced by a solution to a polynomial equation

Φ(w,z) = wmP0(z)+wm−1P1(z)+ · · ·+Pm(z) = 0,
and the degrees ofP0,P1, . . . ,Pm are[d0,d1, . . . ,dm].

Order arrows now live on a Riemann surface

Theorem

A multivalue approximation with degree vector[d0,d1, . . . ,dm] is an
A-function only if

p≤ 2d0.
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The Daniel-Moore “conjecture”

This former conjecture was first proved using order stars in [1], but
today I will outline an order arrow proof.

It concerns a more general type of approximation, in whichR(z) is
replaced by a solution to a polynomial equation

Φ(w,z) = wmP0(z)+wm−1P1(z)+ · · ·+Pm(z) = 0,
and the degrees ofP0,P1, . . . ,Pm are[d0,d1, . . . ,dm].

Order arrows now live on a Riemann surface

Theorem

A multivalue approximation with degree vector[d0,d1, . . . ,dm] is an
A-function only if

p≤ 2d0.
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For an A-approximation, we must avoid an arrow diagram like the
following, because we cannot have an up-arrow from zero crossing the
imaginary axis on its way to−∞.

2πp+
1
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For an A-approximation, we must avoid an arrow diagram like the
following, because we cannot have an up-arrow from zero crossing the
imaginary axis on its way to−∞.

2πp+
1

Hence,
2π(d0 +1)

p+1
> π,

which impliesp≤ 2d0.
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The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization of Padé
approximations in which the order is

p = d0 +d1 + · · ·+dm+m−1.
The conjecture surmised that a necessary condition for an
A-approximation is that

2d0−p≤ 2,

just as for the Ehle result.

It is not possible to include a proof of this result here but itcan at least
be noted that the crucial part of the proof is that every pole is at the end
of an up-arrow from zero.

The simple argument which worked in the casem= 1 cannot be used
in the more general situation because it might be possible for
up-arrows from zero to cross down-arrows from zero if they lie on
different sheets of the Riemann surface.
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The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization of Padé
approximations in which the order is

p = d0 +d1 + · · ·+dm+m−1.
The conjecture surmised that a necessary condition for an
A-approximation is that

2d0−p≤ 2,

just as for the Ehle result.

It is not possible to include a proof of this result here but itcan at least
be noted that the crucial part of the proof is that every pole is at the end
of an up-arrow from zero.

The simple argument which worked in the casem= 1 cannot be used
in the more general situation because it might be possible for
up-arrows from zero to cross down-arrows from zero if they lie on
different sheets of the Riemann surface.
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The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization of Padé
approximations in which the order is

p = d0 +d1 + · · ·+dm+m−1.
The conjecture surmised that a necessary condition for an
A-approximation is that

2d0−p≤ 2,

just as for the Ehle result.

It is not possible to include a proof of this result here but itcan at least
be noted that the crucial part of the proof is that every pole is at the end
of an up-arrow from zero.

The simple argument which worked in the casem= 1 cannot be used
in the more general situation because it might be possible for
up-arrows from zero to cross down-arrows from zero if they lie on
different sheets of the Riemann surface.
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The Butcher-Chipman conjecture

This conjecture concerns a multivalue generalization of Padé
approximations in which the order is

p = d0 +d1 + · · ·+dm+m−1.
The conjecture surmised that a necessary condition for an
A-approximation is that

2d0−p≤ 2,

just as for the Ehle result.

It is not possible to include a proof of this result here but itcan at least
be noted that the crucial part of the proof is that every pole is at the end
of an up-arrow from zero.

The simple argument which worked in the casem= 1 cannot be used
in the more general situation because it might be possible for
up-arrows from zero to cross down-arrows from zero if they lie on
different sheets of the Riemann surface.
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Why arrow pictures are hard to draw

Becausew(z) = R(z)exp(−z) is very close to 1 whenz is close to
zero, it is difficult to determine accurately whenw(z) is real.

To illustrate this, consider the[5,5] Padé approximation

R(z) =
1+ 1

2z+ 1
9z2 + 1

72z3 + 1
1008z

4 + 1
30240z

5

1− 1
2z+ 1

9z2− 1
72z3 + 1

1008z
4− 1

30240z
5

In the next slide, we will present a figure constructed by evaluating
the imaginary part ofR(z)exp(−z) over a grid of points superimposed
on the unit circle centred at 0.

The centre of each small square was regarded as a point on an order
arrow if the sum of the signs of the imaginary parts ofw(z) at the
corners was−1, 0 or+1 and the real part ofw(z) is positive.
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Why arrow pictures are hard to draw

Becausew(z) = R(z)exp(−z) is very close to 1 whenz is close to
zero, it is difficult to determine accurately whenw(z) is real.

To illustrate this, consider the[5,5] Padé approximation

R(z) =
1+ 1

2z+ 1
9z2 + 1

72z3 + 1
1008z

4 + 1
30240z

5

1− 1
2z+ 1

9z2− 1
72z3 + 1

1008z
4− 1

30240z
5

In the next slide, we will present a figure constructed by evaluating
the imaginary part ofR(z)exp(−z) over a grid of points superimposed
on the unit circle centred at 0.

The centre of each small square was regarded as a point on an order
arrow if the sum of the signs of the imaginary parts ofw(z) at the
corners was−1, 0 or+1 and the real part ofw(z) is positive.
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Why arrow pictures are hard to draw

Becausew(z) = R(z)exp(−z) is very close to 1 whenz is close to
zero, it is difficult to determine accurately whenw(z) is real.

To illustrate this, consider the[5,5] Padé approximation
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1+ 1

2z+ 1
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72z3 + 1
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4 + 1
30240z
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4− 1

30240z
5

In the next slide, we will present a figure constructed by evaluating
the imaginary part ofR(z)exp(−z) over a grid of points superimposed
on the unit circle centred at 0.

The centre of each small square was regarded as a point on an order
arrow if the sum of the signs of the imaginary parts ofw(z) at the
corners was−1, 0 or+1 and the real part ofw(z) is positive.
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Becausew(z) = R(z)exp(−z) is very close to 1 whenz is close to
zero, it is difficult to determine accurately whenw(z) is real.

To illustrate this, consider the[5,5] Padé approximation
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In the next slide, we will present a figure constructed by evaluating
the imaginary part ofR(z)exp(−z) over a grid of points superimposed
on the unit circle centred at 0.

The centre of each small square was regarded as a point on an order
arrow if the sum of the signs of the imaginary parts ofw(z) at the
corners was−1, 0 or+1 and the real part ofw(z) is positive.
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|z| = 1
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Why arrow pictures are easy to draw

Even though we cannot obtain a clear picture of the arrows by this
technique, we can take into account that, near zero, we know that the
lines we want are approximately radial with arguments

θk = 2πk/22, k = 0,1,2, . . . ,21.

In the next figure, lines in these directions are shown but with each
point replaced by the closest point arising in the previous figure.
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technique, we can take into account that, near zero, we know that the
lines we want are approximately radial with arguments

θk = 2πk/22, k = 0,1,2, . . . ,21.

In the next figure, lines in these directions are shown but with each
point replaced by the closest point arising in the previous figure.
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This gives a reasonable looking effect which can be improvedby
starting with a much finer grid and extending the region covered to a
large rectangle centred at the origin.

Most of the pictures in this talk were drawn in this way.
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This gives a reasonable looking effect which can be improvedby
starting with a much finer grid and extending the region covered to a
large rectangle centred at the origin.

Most of the pictures in this talk were drawn in this way.
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This gives a reasonable looking effect which can be improvedby
starting with a much finer grid and extending the region covered to a
large rectangle centred at the origin.

Most of the pictures in this talk were drawn in this way.
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A differential equation for order arrows

The difficulty caused by machine arithmetic can be eliminated in
another way, in the case of a Padé approximationN(z)/D(z).

Write w = exp(t) in the relationshipwD(z)exp(z)−N(z) = 0, so that

exp(z+ t)D(z)−N(z) = 0. (1)
We can now construct a differential equation expressing the
dependence ofz on t. Differentiate (1) and it is found that

exp(z+ t)(z′(t)(D′(z)+D(z))+D(z))−z′(t)N′(z) = 0. (2)

Eliminate exp(z+ t) from (1) and (2) to yield the differential equation

z′(t)F = N(z)D(z), (3)
where

F = D(z)N′(z)−D′(z)N(z)−D(z)N(z). (4)
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The difficulty caused by machine arithmetic can be eliminated in
another way, in the case of a Padé approximationN(z)/D(z).

Write w = exp(t) in the relationshipwD(z)exp(z)−N(z) = 0, so that

exp(z+ t)D(z)−N(z) = 0. (1)
We can now construct a differential equation expressing the
dependence ofz on t. Differentiate (1) and it is found that

exp(z+ t)(z′(t)(D′(z)+D(z))+D(z))−z′(t)N′(z) = 0. (2)

Eliminate exp(z+ t) from (1) and (2) to yield the differential equation

z′(t)F = N(z)D(z), (3)
where
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Interpret exp(z+ t)D(z)−N(z) = 0 as definingt as a function ofz for
|z| small, so thatt = −Czp+1+O(zp+2), whereC is the error constant.

We can now say something aboutF. It is equal to

D(z)N′(z)−D′(z)N(z)−D(z)N(z) = −(p+1)Czp +O(zp+1).

TheO(zp+1) term can be deleted becauseF is a polynomial of degree
p.

Hence ast moves from zero in a positive direction (up-arrows) or a
negative direction (down-arrows) thezvalue traces out a path
satisfying the differential equation

C
d(zp+1)

dt
= −N(z)D(z),

This differential equation can be used to draw order arrows accurately.
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Interpret exp(z+ t)D(z)−N(z) = 0 as definingt as a function ofz for
|z| small, so thatt = −Czp+1+O(zp+2), whereC is the error constant.

We can now say something aboutF. It is equal to

D(z)N′(z)−D′(z)N(z)−D(z)N(z) = −(p+1)Czp +O(zp+1).

TheO(zp+1) term can be deleted becauseF is a polynomial of degree
p.

Hence ast moves from zero in a positive direction (up-arrows) or a
negative direction (down-arrows) thezvalue traces out a path
satisfying the differential equation

C
d(zp+1)

dt
= −N(z)D(z),

This differential equation can be used to draw order arrows accurately.
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I would now like to show you a gallery of some order arrows pictures
based on both rational and quadratic approximations.

Where an approximation is given in the form
[

P0(z), P1(z), P2(z)
]

this denotes the quadratic function

Φ(w,z) = P0(z)w
2 +P1(z)w+P2(z).

The first picture will be for the[5,5] Padé approximation.

This was constructed using the differential equation approach.
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]

this denotes the quadratic function

Φ(w,z) = P0(z)w
2 +P1(z)w+P2(z).

The first picture will be for the[5,5] Padé approximation.

This was constructed using the differential equation approach.
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I would now like to show you a gallery of some order arrows pictures
based on both rational and quadratic approximations.

Where an approximation is given in the form
[

P0(z), P1(z), P2(z)
]

this denotes the quadratic function

Φ(w,z) = P0(z)w
2 +P1(z)w+P2(z).

The first picture will be for the[5,5] Padé approximation.

This was constructed using the differential equation approach.

0 5 10 15 20 25
106



Introduction
Order stars and order arrows

Applications
Drawing pictures

Gallery

Gallery

I would now like to show you a gallery of some order arrows pictures
based on both rational and quadratic approximations.

Where an approximation is given in the form
[

P0(z), P1(z), P2(z)
]

this denotes the quadratic function

Φ(w,z) = P0(z)w
2 +P1(z)w+P2(z).

The first picture will be for the[5,5] Padé approximation.

This was constructed using the differential equation approach.
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Padé approximation[5,5]
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Padé approximation[5,5]

Sixth order with poles{6,7,8,9,10,11}

10

−10

10−5

Seventh order with poles{ 5
2, 7

2, 7
2, 9

2, 9
2, 2621

533 }

5

−5

5−5

A second derivative approximationp = 6
5

−5

10−5

An A-acceptable second derivative approximationp = 6

4

−4

4−4

0 5 10 15 20 25
113



Introduction
Order stars and order arrows

Applications
Drawing pictures

Gallery
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