
Homomorphic Cryptosystems

Edlyn Teske-Wilson

University of Waterloo

Ottawa, 27 June 2011

Focus: Fully homomorphic encryption

• C. Gentry: Fully homomorphic encryption us-

ing ideal lattices. STOC 2009.

• N.P. Smart, F. Vercauteren: Fully homomor-

phic encryption with relatively small key and

ciphertext sizes. PKC 2010.

• C. Gentry, S. Halevi: Implementing Gentry’s

fully-homomorphic encryption scheme. Euro-

crypt 2011.

• M. van Dijk, C. Gentry, S. Halevi, V. Vaikun-

tanathan: Fully homomorphic encryption over

the integers. Eurocrypt 2010.

The homomorphic property

Basic RSA:

Homomorphic with respect to multiplication....

ERSA(m) = me (mod n) (n = pq)

and

ERSA(ab) ≡ (ab)e = aebe ≡ ERSA(a)·ERSA(b) (mod n),

...but not with respect to addition:

(a+ b)e 6≡ ae + be (mod n).

Fully homomorphic encryption

A fully homomorphic encryption scheme is
a scheme E = (KeyGenE,EncryptE,DecryptE)
with an additional efficient algorithm EvaluateE
that,
for any valid public key pk,
and for any circuit C
(not just a circuit consisting of multiplication gates
as in RSA),
and any ciphertexts

ci ← EncryptE(pk,mi),

outputs

c← EvaluateE(pk, C, c1, . . . , ct),

a valid encryption of C(m1, . . . ,mt) under pk.

Valid, i.e.

DecryptE(sk, c) = C(m1, . . . ,mt).

Note: this definition allows the trivial solution......
so we also require circuit privacy and compact-
ness.

Why homomorphic cryptosystems?

Encryption schemes:

• Searching an encrypted database on a remote
server.

• Compute on encrypted data.

• Spam filtering of encrypted emails.

• Outsource any kind of private computation.

Signature schemes:

• Signatures for network coding
(only linear functions needed).

• Computing on signed data.

(Necessary to shape new security notions.)

Selected references: Homomorphic signatures:

• D. Charles, K. Jain, and K. Lauter. Signa-

tures for network coding. IJICOT, 2006.

• D. Boneh, D. Freeman, J. Katz and B. Wa-

ters: Signing a linear subspace: Signature

schemes for network coding. PKC 2009.

• R. Gennaro, D. Katz, H. Krawczyk, T. Ra-

bin: Secure network coding over the integers.

PKC 2010.

• D. Boneh, D. Mandell Freeman: Homomor-

phic signatures for polynomial functions. Eu-

rocrypt 2011.

Gentry’s Breakthrough (2009):

Use an ideal lattice, J.

That is, J is a lattice that is also an ideal.

Easy to construct a somewhat homomorphic sys-
tem.

“somewhat”...because of “noise”:

Plaintext: m ∈ {0,1}.
Ciphertext:

c = j + 2r +m where j ∈ J and r small.
Decrypt: retrieve e = 2r +m.

This works if e is small enough.
Then find m = e mod 2.

Now, when adding or multiplying ciphertexts, the
noise e increases.....
....until it becomes too large and decryption is
not correct.

Bootstrapping

Noise increases while computing on encrypted data.

So, need to “refresh” the ciphertext every once

in a while.

This is easy if secret key is available:

decrypt, then encrypt again.

Without secret key: “bootstrapping”.

Bootstrapping

Noise increases while computing on encrypted data.

So, need to “refresh” the ciphertext every once

in a while.

This is easy if secret key is available:

decrypt, then encrypt again.

Without secret key: “bootstrapping”.

Bootstrap?

to bootstrap:

to better oneself by one’s own unaided efforts.

bootstrapping:

a series of selfsustaining processes that proceed

without external help.

Bootstrapping (cont.)

Assume our somewhat homomorphic system can

handle circuits up to a certain depth, say D.

If the so-called “augmented” decrypt circuit has

depth ≤ D, then the system is “bootstrappable”.

If we can bootstrap, then we can refresh cipher-

texts, via recryption.

Recryption – refreshing ciphertexts:

(simplified)

The idea:

Take two public-secret key pairs

(sk1, pk1) and (sk2, pk2).

That is:

DecryptE(sk1,EncryptE(pk1,m)) = m

for any message m.

Ditto for the second pair.

Assume the scheme E is homomorphic with re-

spect to the decryption circuit.

Take an encryption of sk1 under the public key

pk2:

EncryptE(pk2, sk1).

Also, take an encryption of the initial ciphertext

under the public key pk2:

EncryptE(pk2,EncryptE(pk1,m)).

Consider

DecE(EncE(pk2, sk1),EncE(pk2,EncE(pk1,m)).

DecE(EncE(pk2, sk1),EncE(pk2,EncE(pk1,m))

= EncryptE(pk2,m).

(Well, you need to do this bit-wise, really....)

So, one can remove the inner encryption......
.....creating a newly encrypted (under pk2) cipher-
text.

Now assume the scheme E can homomorphically
evaluate

DecryptE(sk, c1) + DecryptE(sk, c2)

and

DecryptE(sk, c2) ·DecryptE(sk, c2).

Then we say E is bootstrappable.

Gentry (2009):

E bootstrappable

⇒ fully homomorphic encryption scheme E.

The new scheme inherits semantic security against

chosen plaintext attacks from E.

Back to ideal lattices:

Why they are good:

• Very low circuit complexity of decrypt al-
gorithm.
(Compare with RSA, ElGamal).

• Natural Add/Mult. operations. (Think of
ideals in polynomial rings.)

• Security can be based on standard problems
over ideal lattices, that seem to be as hard
as standard well-studied problems over gen-
eral lattices.

But, problem:

• Decryption circuit is not shallow enough!
I.e., its depth is larger than what EvaluateE
function can handle.

The problem:

EvaluateE function can handle a certain set C of
circuits.

But C does not contain (augmented) decryption
circuit.

Solution 1:

• Modify the scheme to enlarge C.

• But this possibly complexifies DecryptE.

Solution 2: Squash the decryption circuit:

• While encrypting, include extra data to help
decrypter for decryption
(think of server-aided cryptography...).

• Extra data = secret-key info, presented as
subset sum problem.

Some math, at last

Smart-Vercauteren (PKC 2010):

Let n = 2q, f(x) = xn + 1.

R = ZZ[x]/(f(x)) ∼= ZZn.

Consider the principal ideal J = (v) generated by

v ∈ R.

Note: Coefficient vectors associated to the ele-

ments of J form a lattice with rotation basis

~vi := {~v × xi mod f(x) : i ∈ [0, n− 1]} ,

We call J = (~v) an ideal lattice.

Smart-Vercauteren: no lattice talk!

Let K be the number field Q(Θ),
where Θ is a root of f(x) = xn + 1.

Take v(x) ∈ ZZ[x], deg(v) = n− 1,
v(x) ≡ 1 mod 2, ‖v‖∞ ≤ η such that

p := Resultant(v(x), f(x))

is prime.

J = (v(Θ)) is a degree-one prime ideal in ZZ[Θ].

Let r be the common root of v(x), f(x) mod p.

Two-element representation of J: (p,Θ− r).
(p, r) is the public key.

Let z(x) =
n∑
i=0

zix
i be the scaled inverse of v(x):

z(x)v(x) = p (mod f(x)) .

Let w = z0 (mod 2p).
(p, w) is the secret key.

Encryption:

Let m ∈ {0,1}.
Take u(x) ∈R ZZ[x], deg(u) = n− 1, ‖u‖∞ ≤ µ/2.

c← Encrypt((p, r),m) = (m+ 2u(r)) (mod p).

(This is reduction of m+ 2u(Θ) modulo J.)

Decryption:

Decrypt((p, w), c) = c− bc · w/pe (mod 2).

Why this works:

m+ 2u(Θ)− c ∈ J.

Let q(Θ) ∈ ZZ[Θ] such that

m+ 2u(Θ)− c = q(Θ)v(Θ).

So m− c = q0 (mod 2).

(Remember, v(x) ≡ 1 mod 2.)

Recall, z(x)v(x) = p (mod f(x)) and f(Θ) = 0,

so devide by v(Θ):

(m+ 2u(Θ))z(Θ)

p
−
cz(Θ)

p
= q(Θ),

−
(m+ 2u(Θ))z(Θ)

p
+ q(Θ) = −

cz(Θ)

p
.

Thus, q0 = −bc · z0/pe, IF∥∥∥∥∥−(m+ 2u(x))z(x)

p

∥∥∥∥∥
∞
<

1

2
.

Putting things together:

m = c+ q0 (mod 2)

q0 = −bc · z0/pe
w = z0 (mod 2p)

So m = c− bc · z0/pe (mod 2).

Summary:

J = (v(Θ)) where v(x) ∈ ZZ[x], ‖v‖∞ ≤ η.

Encrypt: c← (m+ 2u(r)) (mod p)

(‖u‖∞ ≤ µ/2).

Decrypt: m← c− bc · w/pe (mod 2)

This works if∥∥∥∥∥−(m+ 2u(x))z(x)

p

∥∥∥∥∥
∞
<

1

2
.

The latter holds if (after some calculation.....):

‖m+ 2u(x)‖∞ <
η

2
√
n
.

So to decrypt correctly, one needs:

‖m+ 2u(x)‖∞ <
η

2
√
n
.

Now consider computing on encrypted data:

Add:

c1 +c2 = (m1 +m2)+2(u1(r)+u2(r)) (mod p).

Multiply:

c1·c2 = (m1·m2)+2(m1u2(r)+m2u1(r)+4u1(r)u2(r)).

(mod p).

“Noise” increases.......:

Initially, ‖m+ 2u(x)‖∞ ≤ µ+ 1.

Do some calculations.....and obtain:

After executing a circuit with multiplicative depth
D, obtain ciphertext c′ = m′+ 2u′(r) with

‖c′(x)‖∞ ≤ T where T ≈ (nµ)2D.

Recall: to decrypt correctly, one needs:

‖m+ 2u(x)‖∞ <
η

2
√
n
.

More calculation:
The output of a circuit of depth D can be cor-
rectly decrypted if

D log 2 < log log

(
η

2
√
n

)
− log log(nµ).

With n = 211, η = 2
√
n, µ = 2

this allows for D = 1.7.

Need p with 92681 bits for that (for security rea-

sons). This is the largest circuit depth that could

be achieved...... not enough for bootstrapping to

work, even with squashed decryption circuit.

So SV2010 scheme cannot be implemented.

Gentry-Halevi (2011):

generalize Smart-Vercauteren constructions:

• Switch back to lattice presentation.

• Choose ~v such that det~v odd and square-free.

• Algorithm to compute z0 only, not all of z(x).

Security – underlying problems

• Small principal ideal problem (SV 2010).

To recover the private key.

• Bounded distance decoding problem / Clos-

est vector problem (G 2009, SV 2010).

To recover the message from a given cipher-

text.

• Polynomial coset problem (SV 2010) / Ideal

coset problem (G 2009).

To break semantic security.

• Sparse subset sum problem.

To recover secret key from additional data

due to squashing the decryption circuit.

• Approximate integer GCD (DGHV 2010).

More work has been done.......
(all in 2011)

Groth, Smart-Vercauteren, Gu (×5), Boneh-Segev-
Waters, Armknecht-Augot-Perret-Sadeghi, Gen-
try, Gentry-Halevi,

....and more work is being done

• Ideal lattices easier than general lattices?

• Improve efficiency of key generation.

• Improve efficiency of encrypt and decrypt,
and reducing key length and ciphertext size.

• Improve squashing mechanism/get rid of squash-
ing mechanism.

• Get rid of bootstrapping.

• Find new applications.

Thank you!

Security

• IND-CCA2 security (i.e., indistinguishability

of ciphertexts under adaptive chosen cipher-

text attack):

impossible, due to the malleability of cipher-

texts.

• IND-CCA1 security (non-adaptive): open prob-

lem.

• Indistinguishability against chosen plaintext at-

tacks: Yes.

– security of the somewhat homomorphic scheme.

– security after addition of the secret key

hint to the public key.

