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Topic to discuss

• Is MRI CS being validated the wrong way?

• Novel MRI approach for use with CS

• Impact of CS reconstruction using wrong 

simulated data

• Other things to try from constrained sensing 

reconstruction (super-resolution)
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CS validation approach demonstrated 

in L1-Magic software package
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CS validation approach that best 

mimics true MRI data
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Are these validation approaches 

really different?

•Generate angiographic 256 x 256  phantom using 

techniques similar to Shepp-Logan phantom generation.

•Evidence of k-space aliasing of data

•Evidence of k-space ‘mud’ (noise from aliasing)
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Aliasing fairly easy to ‘fix’ by generating k-

space data from higher-resolution image

• Calculate k-space data from high 

resolution phantom and then truncate. 

• 512 x 512 phantom shows evidence  of aliasing 

(mainly) outside of truncated area(ARROWS).

• Need to go to at least 1024 x 1024 resolution 

or calculate directly (analytically) in k-space

TRUNCATE
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k-space offset can only be modeled via 

k-space data manipulation
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Modeling of k-space data by ANY

algorithm works best when complexity

such as this is removed from 

the data set
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Approach to solve k-space data offset

using ideas from SR reconstruction

• Lustig et al. (MRM #58, 1182-95, 2007) 

used SMALL PARTof k-space (centre) to    

identify offset

• Smith et al. (IEEE TMI, #5:3, 132-9, 1986) suggest using 

ALL AVAILABLE DATA for phase correction 

Hermitian data set à S(n)H = (S(n) + S(-n)* ) / 2

anti-Hermitian data set à S(n)AH = (S(n) - S(-n)* ) / 2 

• Super reconstruction is performed on both data sets 

independently before images are recombined. 

•Problem to overcome – approach only demonstrated during 1D super-

resolution reconstruction. MATCHES some of Lustig’s 

proposed symmetric CS sampling schemes,
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MRI white noise

MUST be added to k-space data

+ + j

Henkleman, Med. Phys.  1985

McGibney, Med. Phys.  1993

Gudbjartsson , M.R.M. 1995

Image noise is

1.Quasi – gaussian on large 

intensity object

2.Mixed characteristics on lower 

intensity object

3.Rician  on background 
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Incorrect modeling of noise is a 

common problem seen in literature
INCORRECT MODEL

• Generate DSC CBF 
concentration curves

• Add gaussian noise  (NO!)

• Deconvolve and Analyse

CORRECT MODEL
• Generate DSC CBF 

concentration curves

• (1) Transform to Intensity 
space, 

• (2) Add gaussian noise;

• (3) Transform back 

• Deconvolve and Analyse

• Smith et al., MRM 2001.
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Applying CS to wrong data set?

My novel approach 

– You need the data sparse in one domain to get CS 

to work

– Use (1D) simulation of box-car is not sparse

– Using the edges of the box-car is sparse
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Problems to solve with

validating algorithms this sort of data
• How can you generate ‘EDGE’ k-space data experimentally?

• ANSWER: Multiple original k-space data of NON-EDGE image by k. 

– Important to avoid aliasing in original k-space data

REAL
IMAGINARY

MULTIPLICATION IS NOT ‘PERFECT’ BECAUSE OF

RESIDUAL ALIASING PRESENT WHEN USING 256 pt LINE IMAGE
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Problems to overcome

when using ‘edge’ k-space data

• Multiplication by k enhances high frequency noise 
components

– Especially true for ‘wide’ image components which are 
‘narrow’ in frequency domain

– SOLUTION:   Fit wide and narrow separately?

• In super-resolution image reconstruction using 
TERA (Smith, 1990) only needed a few data points 
in edge k-space to recognize edges since ‘sinusoids’
are easy to model.
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Modeling the data edges 

can work ‘too well’ with phantoms

• Frequency components have form 
A cos (2 ∏F (k-1) / N) + j B sin (2 ∏F (k-1) / N)

– Problem if F is NOT an integer as image edges fall between 
sample points so numerical integration fails

• Solution with 
super-resolution
reconstruction was its inherent ability
to zoom data x 16 or more times
PLUS ability to apply DFT matching
and pole pulling to control image 
instabilities in reliable fashion

M. R. Smith and S. T. Nichols,  Proceedings of 10th Annual Meeting Society of MRM, 
San Francisco,  #2, 749, 1991
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Where are we at in trying these SR 

ideas with CS reconstruction?

• ‘Correct’ validation versus ‘Incorrect’ validation 
examined for L1MAGIC software completed
– Working on Lustig re-validation – different from L1magic

• Components
– Experimentally gather limited k-space (on a 256 x 256)

– Apply L1-magic

– Generate CS-image (256 x 256)

• Validation
– Compare CS-image to what you would have got if you had 

gathered all the 256 x 256 k –space data
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This is the INCORRECT validation 

procedure for constrained imaging
WRONG k-SPACE 

DATA GENERATED
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Validation is wrong as we are not 

simulating the correct k-space data 

• Components

– Experimentally gather limited k-space (on a 256 x 256)

– Apply L1-magic (or other reconstruction algorithm)

– Generate CS-image (256 x 256)

• If we tune our CS algorithms for the wrong sort of 
simulated data – then the algorithm may not be 
correctly tuned for the true experimental data.

– If we tune our algorithms for the correct experimental 
data, what will be reviewer’s comments?
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Differences in the k-space data that will be 

sparsely sampled during CS validation
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So what happens if we use 

the correct data in CS reconstruction 

• It will either work to bring back the ‘gold standard’
image or it will not work
– Is the truncated image the correct ‘gold standard’ image?

– Reviewers often insist on ‘exact and unrealistic’ phantoms 
which means ‘good’ algorithms that work well 
experimentally are discarded

• If the L1MAGIC algorithm does not work on ‘real’ k-
space data (truncated with offsets causing image phase 
shifts) then we must investigate whether
– Minor tuning of algorithm required

– Major tuning of algorithm  required
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Differences in phantom images
Which ‘gold standard’ acceptable to reviewers?

Sampled low resolution  

Shepp-Logan phantom is 

not a valid ‘gold standard’

Image for comparison 

purposes

PHANTOM 

DIFFERENCE

‘True gold standard’ of 

best  reconstruction 

from 256 x 256 

truncated k-space data 

has rippling

But ‘fairly’ clean 

small object shapes
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CS applied to truncated data

Ringing artifacts 

near sharp 

edges

with ‘fairly’

clean object shapes

FFT reconstruction from 

truncated k-space data

CS reconstruction from 

truncated k-space data

Ringing artifacts gone

BUT considerable  

object shape distortion

which was not present in original 

L1Magic validation documentation 
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If the k-space data is fermi-filtered, 

does the CS reconstruction improve?   

FFT reconstruction 

from truncated filtered

k-space data

CS reconstruction from 

truncated  filtered

k-space data
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Lots of possible future directions

• DEFINE ‘DOES THE RECONSTRUCTION IMPROVE?’

– K-space difference metrics and Visual Difference Predictors

• STRANGE IMAGES;   MISSING DATA REINTRODUCED, NOT MISSING NOISE.

– Determine image then move back (FFT) into frequency domain. Now add back 
gaussian random noise on the new points of k-space data before IFFT. 

• REVALIDATE LUSTIG’S CS RECONSTRUCTION APPROACH.

• B0 AND GRADIENT ISSUES MEANS THAT THE PEAK OF K-SPACE DATA IS 
NOT CENTRED AT (0, 0) UNLIKE THE IDEAL PHANTOM.

– Solution from super-resolution -- Reconstruct Hermitian and Anti-Hermitian 
components of image and recombine.

• INVESTIGATE ISSUES OF ‘EDGE GENERATION’ RECONSTRUCTION 

– Issues involving multiplying experimental k-space data by k

• OVERLAP BETWEEN SPARSE SAMPLING AND SUPER-RESOLUTION

– Can they be usefully combined?
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Conclusion

• Much may be transferred from early attempts to reduce k-
space data requirement started with partial Fourier 
transforms (late ’70s) and super-resolution (SR) algorithms 
(late ’80’s).

• Current constrained sensing (CS) algorithms are being 
incorrectly validated (i.e. assumed to be working correctly) 
using Shepp-Logan like phantoms.

• Have suggested a number of solutions and new approaches 
that could be moved from SR to CS.

• Initial investigations under way already show that current 
CS algorithms need to be modified to correctly handle the 
‘true’ characteristics of experimental k-space
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