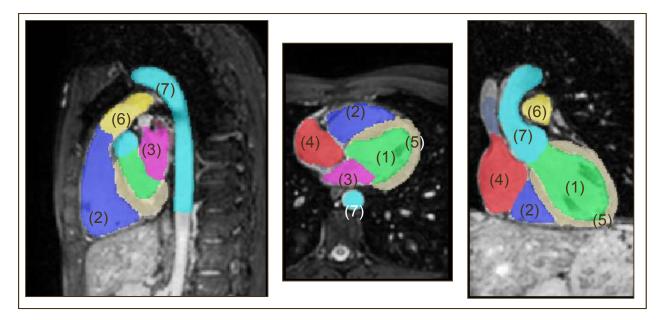


A Registration-Based Atlas Propagation Framework for Automatic Whole Heart Segmentation

Xiahai Zhuang (PhD)

Centre for Medical Image Computing University College London

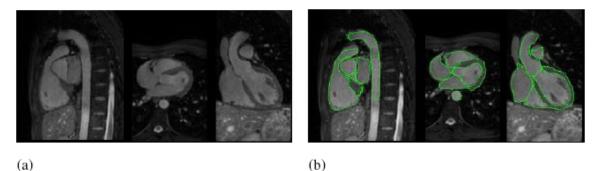
Fields-MITACS Conference on Mathematics of Medical Imaging: Cardiac image segmentation and registration

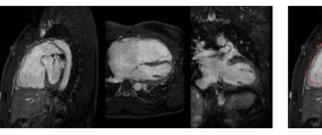

Content

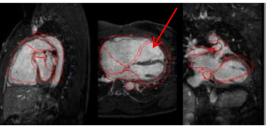
- Whole heart segmentation and challenges
- Whole heart segmentation framework
 - LARM: Locally Affine Registration Method
- Experiments and results
- Conclusion and extension works

Whole heart segmentation and challenges

- Whole heart segmentation
 - Ventricle (myocardium)
 - Atria
 - And sometimes great vessels if needed


Left ventricle (1), right ventricle (2), left atrium (3), right atrium (4), myocardium (5), pulmonary artery (6), and aorta (7).


Whole heart segmentation and challenges


- Challenges of automation:
 - Large shape variability
 - Indistinct boundaries

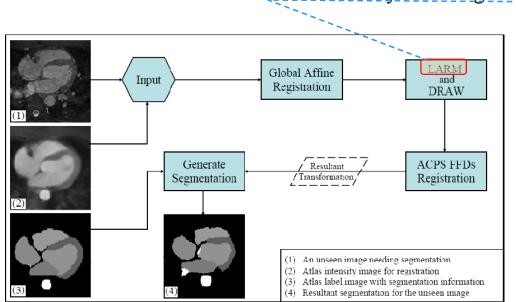
(c)

• Noise, artefacts, intensity inhomogeneity

(d)

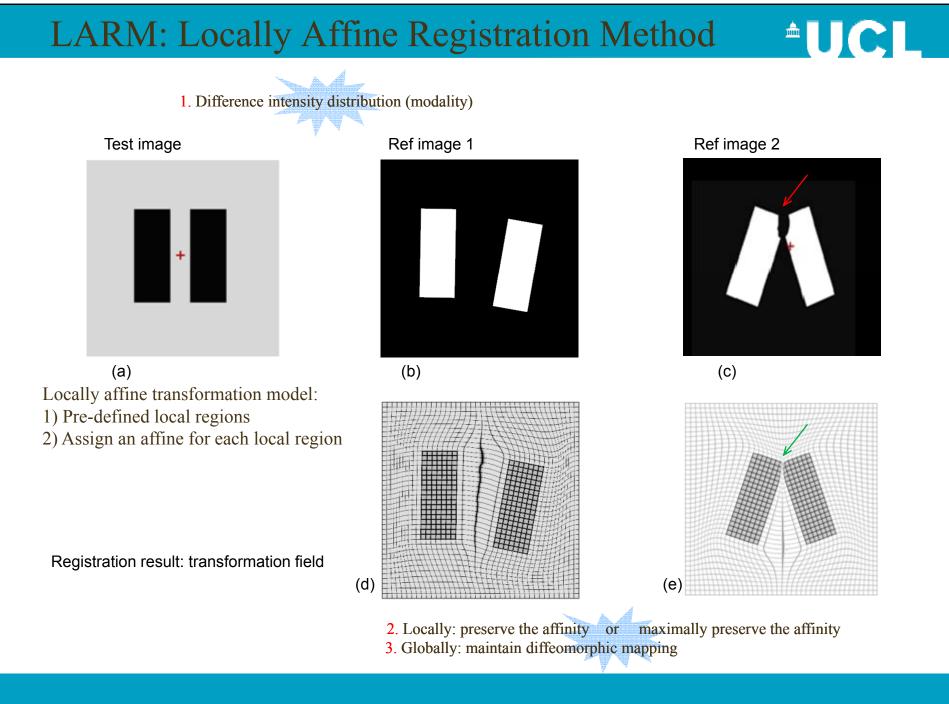
(a) MR image from a healthy volunteer; (b) a successful segmentation of (a) using a model based segmentation ;

(c) MR image from a patient with right ventricle hypertrophy; (d) an erroneous segmentation of (c).


[•]UCL

• Atlas propagation using image registration

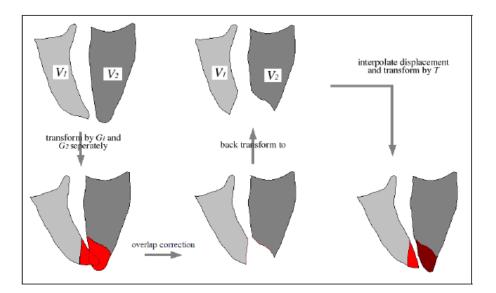
Zhuang, X., *et al.*: An atlas-based segmentation propagation framework using locally affine registration -Application to automatic whole heart segmentation. *MICCAI* 2008


Zhuang, X., *et al.*: Free-Form Deformations Using Adaptive Control Point Status for Whole Heart MR Segmentation. Functional Imaging and Modelling of the Heart 2009

Zhuang, X., *et al.*: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. *IEEE Trans. Med. Imag.* 29 (9), 1612-1625, 2010.

LARM: locally affine registration method

Shape from **an** atlas + LARM = model the variations for all cardiac images with different shapes



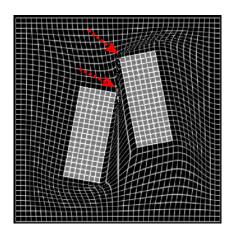
• Locally affine transformation model

$$T(X) = \begin{cases} G_i(X), & X \in U_i, \ i = 1...n \\ \sum_{i=1}^n w_i(X)G_i(X_i), & X \notin \bigcup_{i=1}^n U_i \end{cases} \qquad w_i(X) = \left(1/d_i(X)^e\right) / \left(\sum_{i=1}^n 1/d_i(X)^e\right)$$

Where $\{U_i\}$ and $\{G_i\}$ are local regions and assigned affine transformations and $\{w_i\}$ are normalized weighting functions, $d_i(X)$ is distance between X and U_i .

1. Region overlap -> correction $V_i = G_i^{-1}(G_i(V_i) - \mathbf{DI}_L(R_{ij}))$

Tool download: http://www.cs.ucl.ac.uk/staff/X.Zhuang/zxhproj.html zxhlarm : locally affine registration method


UC

- Locally affine transformation model
 - 1. Region overlap
 - 2. Folding caused by large displacements
 - -> Monitor Jacobian matrix

and concatenation

• Jacobian matrix:

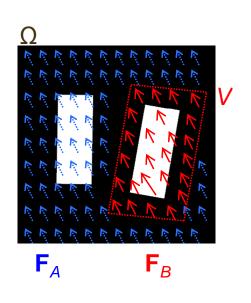
$$J_T = \sum_{i=1}^n \frac{\partial w_i}{\partial x} G_i + \sum_{i=1}^n w_i \frac{\partial G_i}{\partial x} = \nabla \mathbf{W} \cdot \mathbf{G}^{\mathrm{T}} + \nabla \mathbf{G} \cdot \mathbf{W}^{\mathrm{T}}$$

UCL

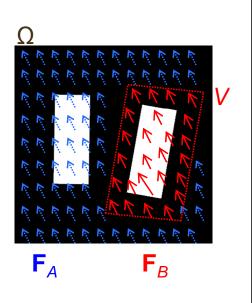
- Monitor the determinant: $||J(T_c)|| \le 0.5$
- Whenever the condition is met, we apply current locally affine transformation result T_c to the source/target image to generate a new one, and then reset the registration
- Final transformation is the concatenation of each locally affine transformations: $T = T_1 \circ T_2 \circ \ldots \circ T_m$

• Similarity measure

- Mutual information $MI(I_r, I_f) = H(I_r) + H(I_f) - H(I_r, I_f)$ $H(I_r, I_f) = -\sum_{r, f} p(r, f) \log p(r, f)$ $p(i) = \sum_{x \in \Omega} \omega(I(x))$ (1)

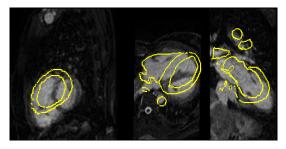

I: image intensity; *H*: entropy;

p: probability function; ω is parzen window function.

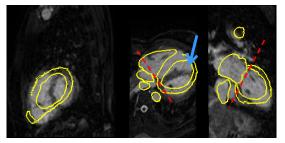

- Computation of driving forces $F_{\theta_{i}} \coloneqq \frac{\partial H}{\partial \theta_{i}} = \left(-\sum_{p} (1 + \log(p)) \frac{\partial P_{A}}{\partial \theta_{i}}\right) + \left(-\sum_{p} (1 + \log(p)) \frac{\partial P_{B}}{\partial \theta_{i}}\right) = F_{A} + F_{B} \qquad (2)$ $p = P_{A} + P_{B} \qquad P_{A} = \sum_{x \in \overline{V}_{i}} \omega(I(x)) \qquad P_{B} = \sum_{x \in V_{i}} \omega(I(x))$ $\longrightarrow F_{\theta_{i}} \coloneqq F_{B} = -\sum_{x} (1 + \log(p)) \cdot \frac{\partial P_{B}}{\partial \theta_{i}} \qquad (3)$

Save up to 100 times computation time in the 3D cardiac application without losing registration accuracy

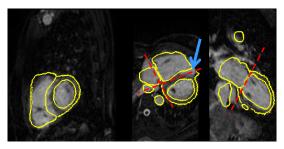
- Similarity measure
 - Mutual information $MI(I_r, I_f) = H(I_r) + H(I_f) - H(I_r, I_f)$ $H(I_r, I_f) = -\sum_{r, f} p(r, f) \log p(r, f) \quad (1)$ $p(i) = \sum_{x \in \Omega} \omega(I(x)) \quad \text{global intensity from } \Omega$
 - Computation of driving forces $F_{\theta_{i}} := \frac{\partial H}{\partial \theta_{i}} = \left(-\sum_{p} (1 + \log(p)) \frac{\partial P_{A}}{\partial \theta_{i}}\right) + \left(-\sum_{p} (1 + \log(p)) \frac{\partial P_{B}}{\partial \theta_{i}}\right) = F_{A} + F_{B} \qquad (2)$ $p = P_{A} + P_{B} \qquad P_{A} = \sum_{x \in \overline{V}i} \omega(I(x)) \qquad P_{B} = \sum_{x \in Vi} \omega(I(x))$

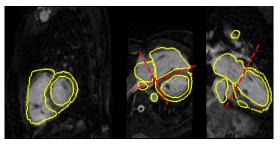

$$\longrightarrow \mathbf{F}_{\theta_i} := \mathbf{F}_B = -\sum_p \left(1 + \log(p)\right) \cdot \frac{\partial P_B}{\partial \theta_i}$$
(3)

- Different from region-based registration [Zhuang, et al. SPIE'08]
 - Each local region is extracted and registered to the target image separately $F_{\theta_i} = -\sum_n (1 + \log(P_B)) \cdot \frac{\partial P_B}{\partial \theta_i}$ (4) local intensity from V


[Zhuang, et al.: In: SPIE Vol. 6914 Medical Imaging 2008: Image Processing, 6914, 07, 2008.]

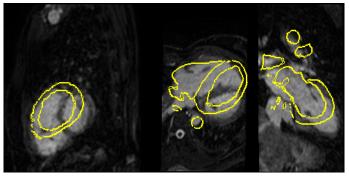
Application to whole heart segmentation


- Applied to whole heart segmentation for initialisation
 - Hierarchy scheme


1) After global affine registration

2) After LARM of two regions

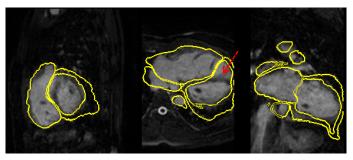
3) After LARM of four regions

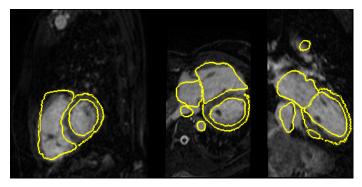

4) After LARM of seven regions

UCL

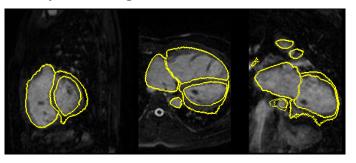
Application to whole heart segmentation

UCL


Bad initialization by global affine registration


(a)

FFD nonrigid propagation result using global affine registration for initialization

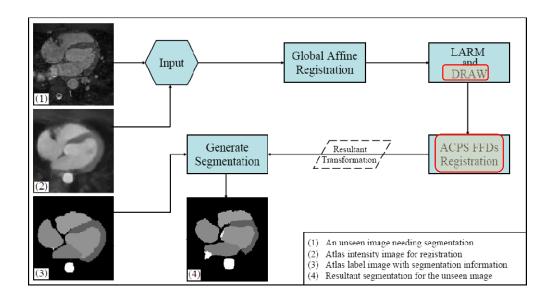


Good initialization by **locally affine registration method**

(b)

FFD nonrigid propagation result using locally affine registration for initialization

(d)

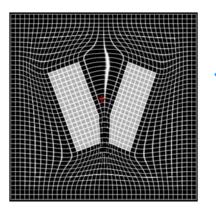

UCL

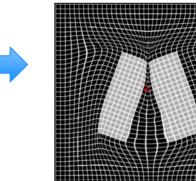
• Atlas propagation using image registration

Zhuang, X., *et al.*: An atlas-based segmentation propagation framework using locally affine registration -Application to automatic whole heart segmentation. *MICCAI* 2008

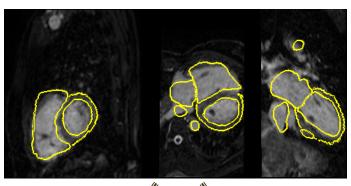
Zhuang, X., *et al.*: Free-Form Deformations Using Adaptive Control Point Status for Whole Heart MR Segmentation. Functional Imaging and Modelling of the Heart 2009

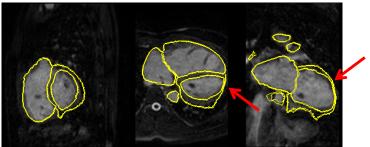
Zhuang, X., *et al.*: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. *IEEE Trans. Med. Imag.* 29 (9), 1612-1625, 2010.



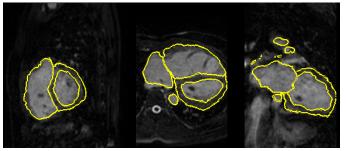

Shape from **an** atlas + LARM = model the variations for all cardiac images with different shapes

- **DRAW**: compute inverse transformation using Dynamic Resampling And distance Weighting interpolation
 - Maximal error is subvoxel for inverting dense displacements
 - Fast computation (~1minute for 3D cardiac application)

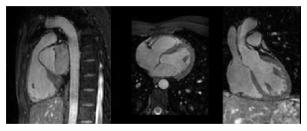

DRAW



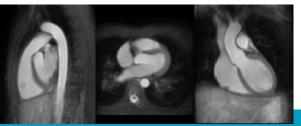
- **ACPS FFD**s: free-form deformation registration with adaptive control point status
- To incorporate prior knowledge for nonrigid registration


Good initialization by locally affine registration

FFD registration propagation result

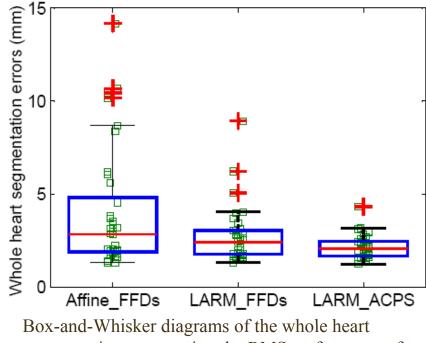


ACPS FFD registration propagation result

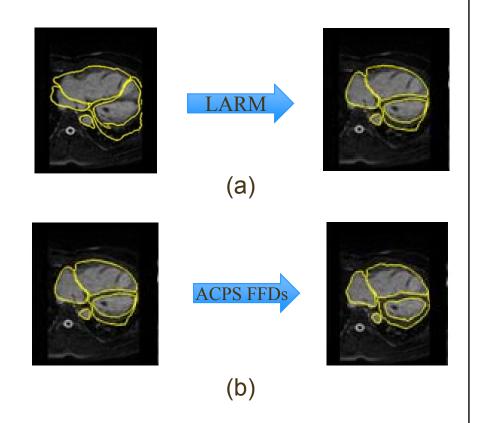

• Data:

- 3D cardiac MRI
- A variety of pathologies and heart morphologies
 19 of 37 with confirmed pathologies (from 9 different pathologies)
- Manually segmentation for each case

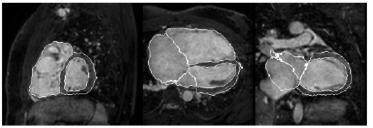
- Atlas:
 - One atlas intensity image and one label image
 - No statistical information for shapes, nor intensity distributions
 - Atlas intensity image



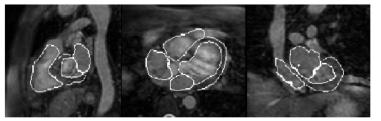
Atlas label image

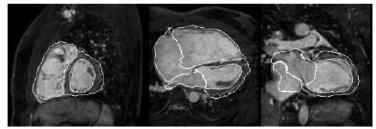


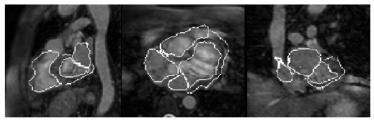
- Propagation using alternative techniques
 - Affine_FFDs: global affine registration + traditional FFD registration
 - LARM_FFDs: global affine registration + LARM + traditional FFD registration
 - LARM_ACPS: global affine registration + LARM + ACPS FFD registration

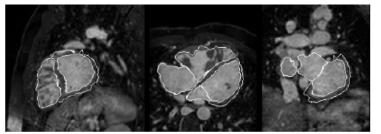


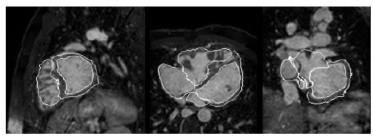
segmentation errors using the RMS surface-to-surface error measure, the errors of the 37 cases using the three different segmentation frameworks.




• Three worst cases

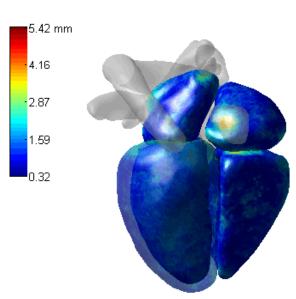

Subject-1, gold standard segmentation


Subject-116, gold standard segmentation


Subject-1, LARM_ACPS segmentation

Subject-116, LARM_ACPS segmentation

Subject-9, gold standard segmentation



Subject-9, LARM_ACPS segmentation

The three worst cases by the three segmentation methods. Subject-1 is the worst case of the Affine FFDs, subject-116 is the worst case of LARM FFDs, and subject-9 is the worst case of LARM ACPS. Images are displayed with delineated contour superimposing on the MR images, in sagittal, transverse, and coronary views. Subject-1 and subject-9 are pathological cases while subject-116 is a healthy case.

Zhuang, X., *et al.*: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. *IEEE Trans. Med. Imag.* 29 (9), 1612-1625, 2010.

- Quantitative results
 - Color map of surface-to-surface errors of the whole heart segmentation (The 37 cases were mapped to
 - a common space to compute the average error of them)
 - Visualize performance
 The big errors mainly distributed
 to the area of connections
 between substructures

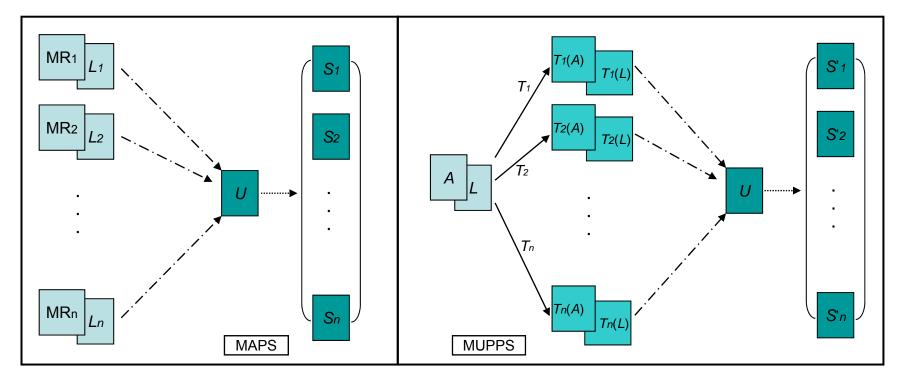
UCL

• Quantitative results for all local region, using different error measures

(error in mm)	Affine_FFDs	LARM_FFDs	LARM_ACPS in different measures (ranges are of unit mm)					
Structures	ϵ_{rms} [max]	$\epsilon_{rms}[\max]$	ϵ_{rms} [max]	ϵ_{mean}	ϵ_{std}	0-2	2-5	> 5
Left Ventricle	$3.79 \pm 4.38 \textbf{[19.6]}$	$1.89\pm1.10\textbf{[7.12]}$	1.47 ± 0.32 [2.38]	1.06	1.02	82.9%	16.5%	0.6%
Left Atrium	3.26 ± 2.25 [11.5]	2.81 ± 1.65 [9.28]	$2.38\pm1.14~\textbf{[7.33]}$	1.69	1.68	70.2%	23.5%	6.4%
Right Ventricle	$3.23 \pm 1.79 \textbf{[7.50]}$	2.75 ± 1.51 [8.57]	$2.13\pm0.70~\textbf{[4.05]}$	1.50	1.51	72.2%	24.1%	3.7%
Right Atrium	3.06 ± 1.74 [9.44]	$2.51\pm1.20\textbf{[7.05]}$	2.22 ± 0.75 [5.74]	1.51	1.62	73.0%	22.5%	4.5%
Epicardium	$4.78\pm4.88 \textbf{[20.4]}$	$2.88\pm2.12\textbf{[12.9]}$	2.32 ± 0.82 [5.43]	1.69	1.60	68.6%	25.7%	5.6%
Whole Heart	$3.96\pm3.23 \textbf{[14.2]}$	2.71 ± 1.50 [8.93]	2.14 ± 0.63 [4.31]	1.47	1.55	73.6%	22.5%	3.9%

Structures	Dice[min]	Overlap[min]	Diff(%)[max]	P-value (CI mL)	Pearson R
Left Ventricle	$0.92 \pm 0.02 [0.87]$	$0.85 \pm 0.04 [0.78]$	$6.5\pm4.9 \textbf{[19.0]}$	0.028 (0.5,7.5)	0.942
Left Atrium	0.81 ± 0.10 [0.47]	$0.69\pm0.12 \textbf{[0.30]}$	14.1 ± 12.0 [48.4]	0.667 (-2.7,4.2)	0.861
Right Ventricle	$0.87\pm0.04 \textbf{[0.77]}$	$0.77\pm0.06 \textbf{[0.63]}$	$7.5\pm4.9 \textbf{[19.7]}$	0.048 (0.1,12.3)	0.977
Right Atrium	$0.84\pm0.05 \textbf{[0.71]}$	$0.73 \pm 0.07 [0.55]$	9.0 ± 7.2 [28.7]	0.217 (-6.8,1.6)	0.965
Myocardium	$0.77\pm0.06 \textbf{[0.52]}$	$0.63\pm0.07 \textbf{[0.35]}$	8.6 ± 6.9 [26.7]	0.940 (-4.7,5.1)	0.892
All substructures	0.84 ± 0.08 [0.47]	0.73 ± 0.10 [0.30]	10.0 ± 9.6 [48.4]	0.097 (-0.3,3.7)	0.974

Zhuang, X., *et al.*: A Registration-Based Propagation Framework for Automatic Whole Heart Segmentation of Cardiac MRI. *IEEE Trans. Med. Imag.* 29 (9), 1612-1625, 2010.


Conclusion & extension works

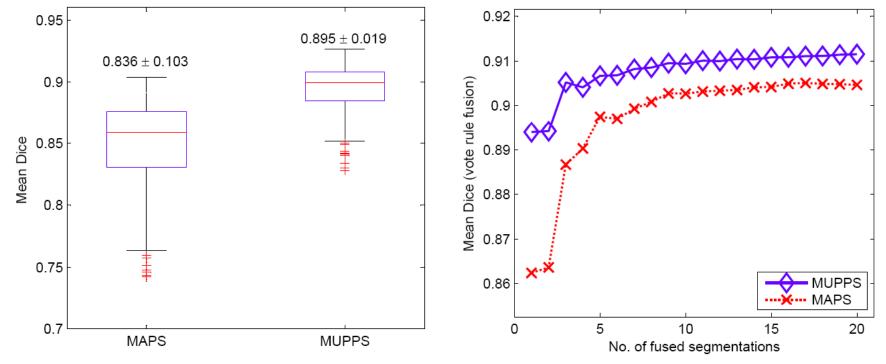
- Whole heart segmentation
 - Method
 - Localisation: global affine registration
 - Initialisation: Locally Affine Registration Method
 - Hierarchy scheme to increase the degree of freedom
 - Dynamic Resampling And distance Weighting interpolation
 - **Refine**: free form deformation registration with adaptive control point status
 - Validation: robust against a variety of pathologies
- Extension: to further improve accuracy
 - Multiple classification strategy
 - Refine with voxel-based classification techniques for accurate myocardium segmentation
 - Combining images from multiple MRI sequences for simultaneous segmentation

UC

Multiple-classifier scheme

MAPS: multi-atlas propagation and segmentation

MUPPS: multiple path propagation and segmentation

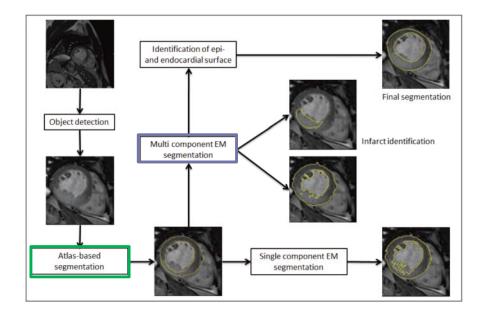

U: unseen images A: atlas intensity image {MR}: cardiac MR images {L}: segmentation labels {T}: deformation which initialized

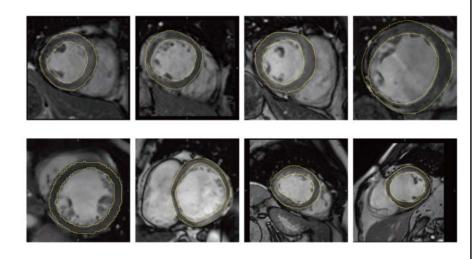
 $\{T\}$: deformation which initializes the propagation path

 $\{S\}$: segmentation propagation results

Multiple-classifier scheme

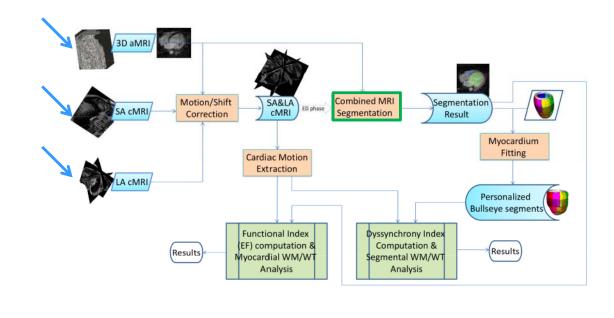
Box-and-Whisker diagram of the Dice scores using MAPS and MUPPS.

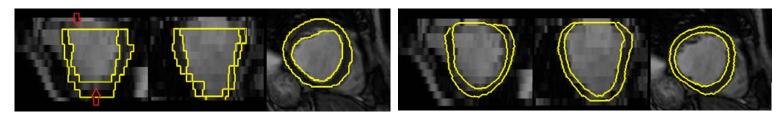

Dice scores from the VOTE fusion results of them


[Zhuang, et al.: Whole Heart Segmentation of Cardiac MRI Using Multiple Path Propagation Strategy. MICCAI'10]

Myocardium segmentation

• Combine atlas propagation and voxel-based classification




Randomly selected results of eight different patients (from 90 subjects)

Combining multi-sequence

• Segmentation – extracting regions;

Registration – motion tracking

Segmentation from single sequence (short-axis) Segmentation from multi-sequence MRIs Red arrows point out the main difference by the two segmentation methods.

[Zhuang, et al. A Framework Combining Multi-Sequence MRI for Fully Automated Quantitative ..., FIMH'11]

UCL