
Approximating the Likelihood for the
Hyper-parameters in Gaussian Process

Regression

Advisor: Professor Radford Neal

Chunyi Wang
Department of Statistics,

University of Toronto

Graudate Student Research Day
April 28th, 2011

Gaussian Process Regression: Model

We observe n training cases (x1, y1), ..., (xn, yn) where xi is a vector of
inputs of length p, and yi is the corresponding scalar response, which
we assume is a function of the inputs plus some noise:

yi = f(xi) + εi

where εi
iid∼ N(0, σ2)

In a Gaussian Process Regression model, the prior mean of the
function f is 0, and the covariance of the response is

Cov(yi, yj) = k(xi, xj) + σ2δij

Gaussian Process Regression: Covariance Function

Any covariance function that leads to non-negative definite covariance
matrices is allowed, such as the squared exponential:

k(xi, xj) = η2 exp(−β2||xi − xj ||2)

η, β are unknown parameters that are estimated from the data.

Illustration of GP data with different hyper-parameter values:

0 1 2 3 4 5
−6

−4

−2

0

2

4

6
η=5,β=0.5,σ=0.5

x

y

0 1 2 3 4 5
−5

0

5

10

15

20
η=5,β=2,σ=0.5

x

y

0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5
η=0.5,β=2,σ=0.5

x
y

Gaussian Process Regression: Prediction

We wish to predict the response y∗, for a test case x∗ based on the
training cases.The predictive distribution for the response y∗ is
Gaussian:

E[y∗|y] = kTC−1y

V ar[y∗|y] = v − kTC−1k

where C is the covariance matrix for the training responses, k is the
vector of covariances between y∗ and each of yi, and v is the prior
variance of y∗, [i.e. Cov(y∗, y∗)].

To do this in the Bayesian framework, we obtain a random sample
from the posterior density for the hyper-parameter θ:

π(θ|y) ∝ (2π)−
n
2 det(C)−1 exp

(
−1

2
yTC−1y

)
π(θ)

where π(θ) is the prior for θ.

Complexity for the GP Regression Model

The posterior density is

π(θ|y) ∝ (2π)−
n
2 det(C)−1 exp

(
−1

2
yTC−1y

)
π(θ)

The time needed to perform the following major computations are
(asymptotically, with an implementation-specific constant coefficient):

C pn2

det(C) n3

C−1 n3

yTC−1y n2

In practice we compute C (pn2), and the Cholesky decomposition of
C (n3), then we can cheaply obtain det(C) and yTC−1y.

Markov Chain Monte Carlo Methods

We construct a ergodic Markov Chain with transition T (x′|x) which
leaves the target distribution π(x) invariant, i.e.∫

π(x)T (x′|x)dx = π(x′)

Metropolis algorithm: propose to move from x to x∗ (according to a
proposal distribution S(x∗|x)), accept the proposal with probability
min[1, π(x∗)/π(x)]. This satisfies the detailed balance condition

π(x)T (x′|x) = π(x′)T (x|x′)

and thus the chain (called reversible) will leave the target distribution
π invariant.

MCMC with Temporary Mapping

We can combine three stochastic mappings T̂ , T̄ and Ť to form the
transition T (x′|x), as follows:

x
T̂−→ y

T̄−→ y′
Ť−→ x′

where x ∈ X is the original sample space and y ∈ Y is a temporary
space.
To leave the target distribution π invariant these mappings have to
satisfy ∫

π(x)T̂ (y|x)dx = ρ(y)∫
ρ(y)T̄ (y′|y)dy = ρ(y′)∫

ρ(y′)Ť (x′|y′)dy′ = π(x′)

Mapping to a Discretizing Chain

Suppose we have a Markov Chain which leaves a distribution π∗

invariant. We can map to a space of realizations of such a chain. The
current state x is mapped to a chain with one time step (whose value
is x) ‘marked’.

x

y

T̂

X

Y

We don’t actually compute everything beforehand, but simulate new
states (and save them for future re-use) when needed.

Mapping to a Discretizing Chain - Continued

We then attempt to “move” the marker along the chain to another
state (whose value is x′), with acceptance probability

min[1, π(x′)/π∗(x′)
π(x)/π∗(x)]. We can do multiple such updates in this space

before mapping back to the original space.

x

x′ y′

T̂

ŤX

T̄

Y

(Solid line segments are the updates that are actually simulated,
while the dashed segments are not).

Approximation: Dimension Reduction

There are mainly two classes of approximation methods. One class of
approximations is based on reducing the dimension of the data.

I Subset of data (SoD): π∗ is the “posterior” given only a subset
(of m observations) of (x1, y1), ..., (xn, yn). Need time
proportional to pm2 to compute C∗, and m3 to invert C∗.

I Linear combination of responses: Let ỹ = Ay where A is of rank
m. ỹ is also Gaussian, with lower dimension. π∗ is the posterior
based on the covariance matrix for ỹ, C̃ = ACAT , of rank m.

I Others: SoR, Bayesian Committe Machine, etc...

Approximation: Diagonal Plus Low Rank

The other class is based on approximating the covariance matrix C by
the sum of a diagonal matrix and a matrix of low rank.

C is usually of the form σ2I + C0, where C0 is non-negative definite.
If C0 can be approximated by some lower rank matrix Ĉ0, then with
the matrix inversion lemma and the matrix determinant lemma:

(D + UWV T)−1 = D−1 −D−1U(W−1 + V TD−1U)−1V TD−1

det(D + UWV T) = det(W−1 + V TD−1U) det(W) det(D)

the computation can be reduced. Thus we can approximate the
likelihood by substitute C with Ĉ = Ĉ0 + σ2I in the posterior:

(2π)−
n
2 det(Ĉ)−1 exp

(
−1

2
yT Ĉ−1y

)

Approximation: Diagonal Plus Low Rank - Continued

I Eigen-method: Ĉ = σ2I +BΛmB
T , where Λm is the diagonal

matrix with eigenvalues λ1 ≥ λ2, ...,≥ λm of C on its diagonal,
and B is an n×m matrix whose columns are the corresponding
orthonormal eigenvectors. Need to compute C (pn2) and the first
m eigenvalues and eigenvectors of C (mn2, with a large constant
factor).

I Nyström methods: Ĉ = σ2I + C0
(n,m)[C

0
(m,m)]

−1C0
(m,n) where

C0
(n,m) is a n×m matrix, whose m columns are m randomly

selected columns from C0. Need to compute C0
(n,m) (pmn), then

find the Cholesky decomposition of some m×m matrix, (m3).

Example: Use SoD to form the π∗

We generate a synthetic dataset as follows:

y = 3 sin(x2) + 2 sin(1.5x+ 1) + ε

where x ∼ Unif(0, 3) and ε ∼ N(0, 0.52). We generated 500
observations as the training set, and another 300 for the testing set.

We use the a squared exponential co-
variance function:

102 + η2 exp

(
−

(x− x′)2

β2

)
+ δ·,′σ

2

and the priors are

log η2 ∼ N(3, 32)

log β2 ∼ N(2, 32)

log σ2 ∼ N(0, 32)

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

x

y

Training Set

Example: Use SoD to form the π∗ - Continued

The first 50 observations are used as the subset to form the π∗ to implement the

MCMC (with “mapping”), and compare the results to a Metropolis MCMC. The

sample ACFs are adjusted so that they reflect the same amount of evaluations of

π(x).

0 0.5 1 1.5 2 2.5 3
−6

−4

−2

0

2

4

6

x

y

Predictions

testing cases
metropolis
mapping

0 20 40 60 80 100
−0.5

0

0.5

1

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

Sample ACF − Metropolis

0 5 10 15 20 25 30
−0.5

0

0.5

1

Lag

S
am

pl
e

A
ut

oc
or

re
la

tio
n

Sample ACF − Mapping with SoD

References

1. Neal, R. M. (1998) Constructing Efficient MCMC Methods Using
Temporary Mapping and Caching, Talk at Columbia University,
December 2006

2. Neal, R. M. (1998) Regression and Classification Using Gaussian
Process Priors Bayesian Statistics 6, pp. 475-501 Oxford University
Press

3. Neal, R. M. (2008) Approximate Gaussian Process Regression Using
Matrix Approximations and Linear Response Combinations Tech.
Report (Draft), Dept. of Statistics, University of Toronto

4. Quiñonero-Candela, J., Rasmussen, C.E. and Williams, C. K. I. (2007)
Approximation Methods for Gaussian Process Regression Tech. Report
MSR-TR-2007-124, Microsoft Research

5. Rasmussen, C. E. and Williams, C. K. I. (2006) Gaussian Processes
for Machine Learning, The MIT Press.

