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What are constellations of points?

• A constellation is simply a collection of points in some parameter space.

• Constellations are constructed by taking an initial point and increasing

or decreasing each coordinate by a constant, keeping the others fixed.

• An example of a constellation in one dimension would be

{θ, θ + ǫ, θ − ǫ}, for some ǫ > 0.

• Constellations can be defined in many other ways as well. We can make

ǫ random, we can add or subtract multiples or powers of epsilon.



Ensemble MCMC methods

• Our general framework is ensemble MCMC, introduced by Neal in 2010.

• Here, we first probabilistically map from the space we want to sample

from, say Θ, to its K-fold Cartesian product, ΘK .

• We then perform updates in the product space, and map back to the

original space to obtain a sample from our distribution.

• This must be done in a way that leaves the distribution we want to

sample from invariant.



A constellation Metropolis sampler (1)

• Consider a (parameter) space Θ, and some point θ = (θp
1, . . . , θ

p
K) ∈ Θ.

• Consider a constellation consisting of the 2K + 1 points

{(θc
1, . . . , θ

c
K), (θc

1 + ǫ, . . . , θc
K), . . . , (θc

1, . . . , θ
c
K − ǫ)} = {θc

1, . . . , θ
c
2K+1}.

• Map to the constellation by identfiying θ with a point of this

constellation. This is done by uniformly selecting an index

i ∈ {1, . . . , 2K + 1}.

• Compute the remaining points of the constellation, relative to the

selected point.



A constellation Metropolis sampler (2)

• Once we have mapped to a constellation, we want to perform an update

in the constellation space.

• Suppose we are sampling from a density π, and our constellation consists

of the 2K + 1 points {θ1, . . . , θ2K+1}.

• We propose a new constellation by shifting the current one. For

example, we can propose a new ‘centre’ point, and shift all other points

relative to it.

• The constellation move is accepted or rejected with probability

min

(

1,

∑

i π(θ∗i )
∑

i π(θi)

)

• The constellation can then be mapped back to a single point i with

probabilities π(θi)/
∑

i π(θi).

• Note that we can perform multiple updates in the constellation space

before mapping back to a point.



When can this help?

• The hope is that this sampler accepts more of the moves we propose,

especially larger moves, compared to the usual Metropolis algorithm.

• But... such a method makes sense only if we can evaluate the density for

every constellation point faster than evaluating the density at each point

separately.

• If this is not possible, we may well just use the extra time to generate

more samples.

• Fortunately, efficient computations are possible for a large class of

models: neural networks, logistic regression, linear regression, and so on.



A neural network model and example problem

• Consider a neural network for regression with P inputs and H hidden

units.

t = a +
H

∑

j=1

vjtanh(bj +
P

∑

k=1

xkwjk)

= a +
H

∑

j=1

vjhj

• We want to fit this network to 100 observations from

t = 0.7x2

1 + 0.8 sin(0.3 + (4.5 + 0.5x1)x2)+

+ 0.85 cos(0.1 + 5x3 + 0.1x2

2) + N(0, 0.42)

where, in addition to the 3 relevant inputs, we include 9 additional

inputs, 6 that are highly correlated with the relevant ones, and 3

irrelevant ones. This example is from (Neal, 2010).



Fitting the network (1)

• We want to fit this network using a Bayesian approach, by averaging

over predictions made using a sequence of parameter samples from the

posterior.

• We assume that the regression noise is Gaussian, and put a mean zero

Gaussian prior on the parameters.

• We update the noise variance and the variances of different parameter

groups using Gibbs sampling from an Inverse Gamma distribution.

• When using constellation MCMC, we will consider a constellation over

the ‘hidden to output weights’ vj only.



Fitting the network (2)

• For efficient evaluations of the posterior density at vj + ǫ, we save the

values of hj’s and
∑H

j=1
vjhj. We then add ǫhj to the latter sum.

• Note that this requires a total of 2 arithmetic operations, as opposed to

2H if we only saved the h′

js and recomputed the sum from scratch. If we

didn’t save the h′

js, we would have to do even more.

• Similar computational savings apply if we want to evaluate the density

for constellations over other parameters.



Performance of constellation MCMC

• We use a spherical Gaussian as our proposal distribution, fixing the

standard deviation at 0.0425. For constellation MCMC, we set ǫ to 0.1.

We draw a total of 100000 samples.

• At each constellation MCMC step, we map to a single point, update the

prior variances, and then map to a new constellation.

• To compare constellation and ordinary Metropolis, we look at

autocorrelation times of
∑H

j=1
w2

jk, the sums of squared weights for each

of the 12 inputs, and the acceptance rates.

• The autocorrelation times are estimated using an AR model. On

average, the reduction is about 37%. In particular, the average

autocorrelation time over all inputs is reduced from about 832 to about

607.

• The acceptance rate increases by about 20%, from about 18.6% to about

22.4%.



Dynamics of constellation MCMC

• We want to understand whether proposals are accepted due to moving to

a new constellation point. This can help in selecting a good value of ǫ

• If ǫ is too large, it is possible that we may get stuck at a small subset of

the constellation points, mapping back to the same point for long

sequences of steps.

• In an extreme case, we may always map to a single point. The algorithm

thus essentially works in a single dimension.

• Asymptotically, the probabilities of selecting a point with a particular

index from the constellation become uniform. This is another diagnostic

measure.



Some illustrations

Figure 1: Estimated transition probabilities, epsilon=0.1 and epsilon=0.4



Future plans

• Selection of a good value of epsilon. We can link this to the prior

variances.

• Choosing the number of ‘shells’, when to map back and forth from a

constellation to a point.

• Selecting the parameters we construct a constellation for.

• Better understanding of the dynamics of constellation Metropolis.


