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The First Group of Models pertains to the case

where logarithmic returns on equities either be-

long to the class of Hougaard processes or are

represented as their difference. A comprehen-

sive review is given in V (2002, 2004ab).

It appears that they could be interpreted as those

modelling market behavior near equilibrium

(see below).

Hougaard processes {Xp,µ,λ(t), t ≥ 0} are spe-

cific univariate Lévy processes generated by the

members of the power-variance family (PVF)

of probability laws (3)–(7). The terminology

goes back to Lee & Whitmore (1993). Namely,
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Xp,µ,λ(1)
d
= Twp(µ, λ),

where the collection of r.v.’s

{Twp(µ, λ), p ∈ ∆, µ ∈ Ωp, λ ∈ R1
+}

constitutes PVF. Hereinafter, R1
+ := (0,∞).

The reason for using PVF acronym is because

Var Twp(µ, λ) = λ−1 · µp

= λ−1 · (E Twp(µ, λ))p.
(1)

Scaling Property:

for each fixed real c > 0,

c−1 · Twp(c · µ, cp−2 · λ)
d
= Twp(µ, λ).

Domain of the power parameter:

∆ = (−∞, 0] ∪ [1, +∞).
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λ & µ ∈ Ωp are scaling & location parameters.

Ωp =



[0,∞) if p ∈ (−∞, 0);

R1 if p = 0;

R1
+ if p ∈ [1, 2];

(0,∞] if p ∈ (2,∞).

∀p ∈ ∆ \ {1}, define the exponential tilting pa-

rameter

θ(p, µ, λ) :=
1

|1− p|
· λ · µ1−p. (2)

∀p ∈ ∆ \ {1; 2}, set

Bp,λ :=
|1− p|(2−p)/(1−p)

|2− p|
· λ1/(p−1).

The law of r.v. Twp(µ, λ) is characterized by

its c.g.f. ζp,µ,λ(·).
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For p ∈ (−∞, 0],

ζp,µ,λ(s) = Bp,λ

· {(θ(p, µ, λ) + s)
2−p
1−p − θ(p, µ, λ)

2−p
1−p}.

(3)

ζ1,µ,λ(s) = µ · λ · (es/λ − 1). (4)

ζ2,µ,λ(s) = −λ · log (1− s/θ(p, µ, λ)). (5)

For p ∈ (1, 2),

ζp,µ,λ(s) = Bp,λ

· {(θ(p, µ, λ)− s)
2−p
1−p − θ(p, µ, λ)

2−p
1−p}.

(6)

If p ∈ (2, +∞),

ζp,µ,λ(s) = Bp,λ

· {θ(p, µ, λ)
2−p
1−p − (θ(p, µ, λ)− s)

2−p
1−p}.

(7)

Composition of the Family {Xp,µ,λ(t)}:

p = 0 corresponds to the scaled Brownian
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motion with a drift that starts from the origin:

X0,µ,λ(t)
d
= µ · t + λ−1/2 · Bt.

X1,µ,λ(t) is scaled Poisson process with inten-

sity µλ and magnitude of jumps 1/λ. X2,µ,λ(t)

is gamma process.

Compound Poisson-gamma Hougaard processes

correspond to p ∈ (1, 2). Poisson-exponential

member is characterized by p = 3/2.

Poisson-exponential law has some importance

in quantitative finance. See Yor et al (1994) or

Chacko & Viceira (2003). See Hochberg & V

(2009) for a review of this class.

Hougaard processes with p ∈ (−∞, 0)∪ (2,∞)

are Esscher transforms of spectrally negative ex-
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treme stable processes with skewness β = −1

& α(p) := (2 − p)/(1 − p) ∈ (1, 2), and pos-

itive stable processes with skewness β = 1 &

α(p) ∈ (0, 1), respectively.

Fluctuation Property:

∀p ∈ (−∞, 0], define first-passage time

τu := inf{t : Xp,µ,λ(t) > u}.

Theorem 1 ∀p ∈ (−∞, 0), Lévy process

Xp,µ,λ(t) is spectrally negative. ∀b > 0,

τb
d
= Tw3−p(b/µ, b2−p · λ). (8)

For p = 0, (8) coincides with the result by

Schrödinger (1915) & Smoluchowsky (1915).
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The marginals of Hougaard processes: ∀t > 0,

Xp,µ,λ(t)
d
= Twp(µ · t, λ · tp−1). (9)

Define an important shape parameter

φp := λ · µ2−p. (10)

Definition 2 Lévy process which corresponds to

the generating triplet (b, a, ν) is said to be of

(i) type A if a = 0 and ν(R1) < ∞;

(ii) type B if a = 0, ν(R1) = ∞, and

Iν :=

∫
|x|≤1

|x| · ν(dx) < ∞;

(iii) type C if a 6= 0 or Iν = ∞.

Theorem 3 (i) ∀p ≤ 0, Xp,µ,λ(t) is of type C.

(ii) ∀ p ∈ [1, 2), Xp,µ,λ(t) is of type A.

(iii) ∀ Xp,µ,λ(t) with p ∈ [2,∞) is of type B.
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All the Hougaard processes have a lot in com-

mon. See (9) and the next property of the linear

growth of shape parameter (10): ∀t > 0,

φ
(t)
p := λt · µ2−p

t = λ · µ2−p · t = φp · t. (11)

Here, µt := µ · t; λt := λ · tp−1 (see (9)).

Linear growth property (11) is quite remark-

able. It is closely related to additivity of shape

parameter (see V (2004b)) and to Cramér’s,

Raikov’s and Cochran’s theorems. Neverthe-

less, in view of Th. 3, typical trajectories of

Hougaard processes exhibit a great diversity

(which is good for modelling). This is because

path properties of Lévy processes belonging to

types A, B, C are qualitatively different.
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If generic Lévy process Xt is of type A then its

typical trajectory Xt(ω) performs finite number

of jumps on each finite time interval.

If ν(R1) = ∞ then the set of jump times

D(ω) := {s > 0 : Xs(ω)−Xs−(ω) 6= 0}

is a countable and dense subset of [0,∞).

If Xt is of type A or B then its typical trajec-

tories have a bounded variation on each finite

time interval. In contrast, the typical sample

paths of any Lévy process of type C are func-

tions of unbounded variation on any time inter-

val. Suppose that p ∈ (−∞, 0] and S0 > 0 is

non-random initial price of stock. Define
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geometric Hougaard process as

Sp,µ,λ(t)

:= S0 · exp{Xp,µ,λ(t)− ζp,0,λ(1) · t}.
(12)

Hereinafter, Sp,µ,λ(t) is interpreted as price of

stock at time t. GBM corresponds to p = 0:

S0,µ,λ(t) = S0 · exp{X0,µ,λ(t)− ζ0,0,λ(1)t}
d
= S0 exp{(µ− 1/(2λ))t + λ−1/2Bt}.

For this special case, it is more common to de-

note the reciprocal 1/λ of scaling parameter λ

by σ2, while σ is called the volatility of equity.

Rational Price for European Call Option:

Let T be time of option to maturity, CT,p de-

note rational price of European call option that
11



corresponds to price process Sp,µ,λ(t). This op-

tion may be exercised at time T . Assume that

K is exercise price of this option & short-term

interest rate r ≥ 0 remains constant. Our ap-

proach relies on constructing risk-neutral mea-

sure by using Esscher transform. Set µ(θ) :=

((1−p)·θ/λ)1/(1−p), which is obtained by solv-

ing (2) for θ. One can show that ∃ unique solu-

tion θ = θr,λ(p) ∈ [0, +∞) to next equation:

F (r, λ, p, θ) := ζp,0,λ(1) · ((θ + 1)
2−p
1−p − θ

2−p
1−p

− 1)− r = log E(Sp,µ(θ),λ(1))− r = 0.
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Set

m1 := µr,λ(p) := µ(θr,λ(p))

= ((1− p) · θr,λ(p)/λ)1/(1−p);

m2 := ((1− p)/λ)1/(1−p) · T 1/(2−p)

· (1 + θr,λ(p))1/(1−p);

L := L(K, S0, T, λ, p)

=
log (K/S0)

T (1−p)/(2−p)
+ ζp,0,λ(1)T 1/(2−p).

Theorem 4 Let price process for risky asset fol-

low geometric Hougaard process Sp,µ,λ(t) (12)

with p ∈ (−∞, 0]. For this price process, con-

sider European call option with time to matu-

rity T & exercise price K. Assume that short-

term interest rate r ≥ 0 is constant. Then its
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rational price CT,p is as follows:

CT,p = S0 ·P{Twp(m1, λ) > L}

−K · e−r·T ·P{Twp(m2, λ) > L}.
(13)

For p = 0, (13) becomes the Black-Scholes for-

mula.

Theorem 5 For arbitrary admissible µ & λ, and

∀T > 0,

(i) Sp,µ,λ(·)
D[0,T]
→ S0,µ,λ(·) as p ↑ 0.

(ii) Analogous result with respect to the risk-

neutral martingale measure holds as p ↑ 0:

Sp,m1,λ(·)
D[0,T]
→ S0,r,λ(·).

By Th. 5.ii, ∀ fixed T > 0 and as p ↑ 0,

CT,p → CT,0. (14)
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Near-equilibrium-type results stipulated by Th.

5.i & formula (14) justify using both contin-

uous GBM & Black-Scholes formula as rea-

sonably accurate approximations for prices of

stocks and options, respectively. This is due

to low magnitude of downward jumps of the

underlying Hougaard processes. Accurate ap-

proximations for probabilities which emerge in

(13) can be derived by employing Vinogradov

(2004b).

Large Deviations of Non-Cramér Type:

Theorem 6 Fix p ∈ (−∞, 0)∪(2,∞), µ ∈ R1
+,

λ ∈ R1
+, and consider Xp,µ,λ(t). Suppose that

t → +∞ & y/t(1−p)/(2−p) → −∞ if p < 0, or
15



y/t(1−p)/(2−p) → +∞ if p > 2. Then

(i) ∀ fixed p ∈ (−∞, 0),

P{Xp,µ,λ(t) < y}

∼ t ·P{Xp,µ,λ(1) < y} · e(t−1)·φp/(p−2).

(ii) ∀ fixed p ∈ (2,∞),

P{Xp,µ,λ(t) > y}

∼ t ·P{Xp,µ,λ(1) > y} · e(t−1)·φp/(p−2).

Th.6 follows from V(1994,Ch.5&2004a,Th.1).

The results of V (1994,Ch. 5) stipulate the ex-

istence of specific critical point (denoted by u0)

in the formation of large deviations. Under the

conditions of Th. 6.i, u0 ≡ 0 ∀p < 0, since
16



it coincides with the expectation w.r.t. the ex-

treme conjugate measure & is given by ζ ′p,µ,λ(s)

at the threshold of its domain. In the case where

y ∼ −Ct with constant C > 0, mechanism of

occurrence of a large deviation is as follows:

P{ inf
0<s≤t

∆Xp,µ,λ(s) < −Ct|Xp,µ,λ(t) < −Ct}

→ 1

as t → +∞, where

∆Xp,µ,λ(s) := Xp,µ,λ(s)−Xp,µ,λ(s−).

Alternatively, for p ∈ (−∞, 0)

& y ∈ [ε · t, (µ − ε) · t], or p ∈ (2,∞) and

y ∼ Const · t, the exact asymptotics of the
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probabilities of large deviations are given by

Cramér’s formula. Hence, in the case where

p ∈ (−∞, 0), critical point u0 ≡ 0 serves as

a threshold between two different mechanisms

of formation of the probabilities of large devia-

tions. This phenomenon could be related to the

occurrence of financial bubbles and downfalls.

J.H. McCulloch (OSU) provided the following

feedback on the model described above: ”Tilted

stable distributions have already been used in

the context of option pricing by Vinogradov (2002),

who points out that for α ∈ (1, 2], they are a

special case of the Tweedie distributions, and

generate what are known as Hougaard processes.
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He notes that exponential tilting of a density is

known as the Esscher Transformation. If I un-

derstand his option pricing model correctly, he

is valuing options as their discounted

expected payoff under an exponentially tilted

stable distribution like the RNM of Figure 2,

under the assumption that S0 equals the dis-

counted expectation of ST under this distribu-

tion. According to the present model, this is the

correct procedure for valuing options when the

FM itself is stable with β = 1, provided the

tilting coefficient λ is unity. It would not, how-

ever, be the correct procedure if the FM were

tilted stable, unless log U2 were for some rea-
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son tilted stable and log U1 were nonstochastic,

so that assets were priced as if investors were

risk-neutral.”

Generalization of the model that allows both

up- & downward jumps in the prices of equities.

Consider price process

S(t) = S(0) · exp {X(t)− A · t} . (15)

Here, S(0) > 0 is the initial price of an equity,

A ∈ R1 is a constant, and X(t) is a driftless

Lévy process with no Gaussian component.

We investigate properties of the geometric Lévy

process (15) in the case where the marginal dis-

tributions are those of the difference between

two independent r.v.’s from PVF. To this end,
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assume that Lévy measure of infinitely divisi-

ble r.v. X(1) possesses the density

π(x) =

 d+x−α+−1e−θ+x if x > 0,

d− |x|−α−−1 eθ−x if x < 0.
(16)

Here, d± and θ± are fixed non-negative real,

d+ + d− > 0;

α± ∈ [0, 1) ∪ (1, 2).

Evidently, Lévy process X(t) performs notice-

able up- & downward jumps. The case where

α+ = α− = 0 and θ± > 0

corresponds to the variance-gamma model (see

Madan (2001)). The case where

d+ = d−, α+ = α−,
21



and θ± > 0 characterizes CGMY process (see

[CGMY]). In contrast to [CGMY], we drop their

condition d+ = d− . In particular, suppose that

α+ = α− =: α ∈ (0, 1) ∪ (1, 2),

and define

θ := θ+ + θ− .

In the case where d+ > 0, assume that

θ+ ≥ 1. (17)

Empirical data are often consistent with (17)

(compare to [CGMY, Table 2, Th. 1 &(13)]).

Our set of constraints provides a reasonable

level of generality which enables one to rigor-

ously derive the properties consistent with the
22



distinct features exhibited by the movements of

overleveraged equities. Let

A :=
Γ(1− α)

α
· (d+(θα − (θ − 1)α)− d−).

Under the above conditions, the price process

{S(t), t ≥ 0} given by (15)-(17) is a positive

submartingale. Also, one can demonstrate that

for each real t ≥ 0,

ES(t) = S(0) · exp {g(θ±) · t} ↑

Here, positive growth rate g(θ±) of an equity

can be written down explicitly.

In the case where α ∈ (1, 2), set

u±0 := ± Γ(2− α)

α− 1
d∓ · θα−1.
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One can show that

u−0 ≤ EX(1) ≤ u+
0 .

Also, define

H(u±0 ) :=
Γ(2−α)
α−1 ·{±θ± · d∓ · θα−1

+(d± · θα
± − d∓ ·(θα − θα

∓))/α} ≥ 0.

(compare to V (1994, Ch. 5)).

The next result reveals the existence of critical

points in the formation of large deviations thus

generalizing Th. 6. For simplicity, suppose that

α ∈ (1, 2).

Theorem 7 Consider a driftless Lévy process

X(t) that satisfies (16). Assume that t → ∞
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takes on integer values. Then

P{X(t) > x} ∼ t P{X(1) > x− (t− 1)u+
0 }

· exp{−(t− 1) ·H(u+
0 )}

as (x− t · u+
0 )/t1/α → +∞;

P{X(t) < x} ∼ t P{X(1) < x− (t− 1)u−0 }

· exp{−(t− 1)H(u−0 )}

as (x− t · u−0 )/t1/α → −∞.

One can show that u−0 constitutes a critical point

in the formation of large deviations of X(t) to

R1
− (downfall). Similarly, u+

0 constitutes a crit-

ical point in the formation of large deviations

of X(t) to R1
+ (bubble).
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Marginal distributions of X(t) can be represented

in terms of the difference of two independent

r.v.’s which belong to PVF with common p =

p(α) := (2−α)/(1−α) ∈ (−∞, 0)∪ (2, +∞).

Subsequently, we can determine a risk-neutral

measure by using the Esscher transforms, and

employ it for pricing European call options. The

closed-form formula involves the tails of the

difference between these members of this fam-

ily. It can be evaluated numerically and natu-

rally generalizes Th. 4 to a more general set-

ting. Similar to Th. 5, Black-Scholes formula

can be derived by taking limit as

α ↑ 2 or p(α) ↑ 0.
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In view of Th. 5 and the analogous convergence

result as α ↑ 2, which is valid in more gen-

eral setting, both our models considered above

could be regarded as those modelling market

behavior near equilibrium.

Also, the second model (15)–(17) complies with

three features exhibited by the stock price move-

ments & their implied distributions, which are

associated with the leverage effect. One of them

is the fact that the volatility and the growth rate

are usually negatively correlated. This is re-

lated to (1) with p < 0.

The tails of spectral densities which have the

form (16) are usually termed semi-heavy. It is
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known that the tails of both the original and im-

plied distributions are frequently semi-heavy.

Also, our results yield that the risk-neutral Es-

scher transform is more skewed to the left than

the original distribution.

This is typical for chaotic movements of over-

leveraged equities and their option prices (com-

pare to Madan (2001)). 3rd feature is an in-

creased likelihood of financial crashes. Voit

(1999, Ch. 9) proposes their investigation by

employing the critical state theory. This is con-

sistent with the existence of critical points for

our model (see Th.’s 6 & 7).

G. Castellacci (Interactive Data Co.) provided a
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valuable feedback on the model described above

in his MathSciNet review of Vinogradov

(2004a). See http://www.ams.org/mathscinet

”The author studies a model for the stochastic

evolution of stock prices S(t) given by the fol-

lowing exponential Lévy process:

S(t) = S(0) exp (X(t)− At) ,

where X is a pure-jump Lévy process with den-

sity

π(x) =

d+x−(α+1)eθ+x if x > 0,

d−|x|−(α+1)eθ−x if x < 0,

with the parameters d±, θ± and α± real and

nonnegative such that at least one d± is positive
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and α± ∈ [0, 1) ∪ (1, 2). The case when α± =

0 and θ± > 0 corresponds to the well-known

gamma-variance model while for the case when

d+ = d−, α+ = α−, and θ± > 0 we obtain

the CGMY process of [P. P. Carr et al., J. Busi-

ness 75 (2002), no. 2, 305–332]. Therefore the

above is a generalization of these earlier mod-

els.

It is further assumed that if d+ > 0, then θ+ ≥

1, and the drift is defined as

A := Γ(1− α)
d+(θα − (θ − 1)α)− d−

α
,

where Γ(1 − α) :=
Γ(2−α)

1−α for α ∈ (1, 2) and

θ := θ+ + θ−.
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After deriving asymptotics for the tails of the

distribution of X(t) in terms of the parameters

d±, θ± and α, the author focuses on showing

how, in this setting, option pricing generalizes

the standard Black-Scholes formula. The arbi-

trage pricing of a call with expiry T and strike

K is

CT,α := e−rTEQ [max[S(T )−K, 0] .

Here the risk-free interest rate r is assumed

constant and bounded as r ∈ [0, r∗(α)],

(r∗(α) := (d++d−)((θ−1)α+1−θα)Γ(1−α)/α)

and Q is some risk-neutral measure, which is

not unique. The ensuing market model is in-
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complete and the Esscher transform is used to

choose Q.

The author obtains a pricing formula for CT,α

that is formally analogous to Black-Scholes and

replaces exercise probabilities with tail proba-

bilities of differences of certain power-variance

random variables. This is based on the expres-

sion of X as the difference of two so-called

Hougaard processes, whose properties the au-

thor previously investigated in [C. R. Math.

Acad. Sci. Soc. R. Can. 24 (2002), no. 4,

152–159; MR1940554].

In the same vein, the author proves that both

the process S(·) and its risk-neutral (discounted)
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counterpart converge to suitable geometric

Brownian motions in the Skorokhod topology

of the càdlàg space D[0, T ] as
2− α

1− α
=: p(α) → 0−.

Similarly, the arbitrage call price CT,α con-

verges to an actual Black-Scholes value. Geo-

metric Brownian motion and the Black-Scholes

formula can therefore be assumed to approxi-

mate underlying prices that follow the proposed

class of processes and options thereon, respec-

tively. The former can be interpreted as mod-

elling market behavior near equilibrium,

whereas the latter account for several features

related to the leverage effect, including nega-
33



tive correlation between volatility and growth

rates and left skewness of the pricing density

(obtained by the Esscher transform).

The paper is an interesting generalization of

the results of [P. P. Carr et al., op. cit.] and

similar work. However, unlike that article, the

present one does not test its model empirically

and implicitly relies on that and previous work

for its financial raison dêtre.”

A Different Model which could have potential

applications in portfolio selection. Suppose that

∃ one bond with price process

Sb(t) = Sb(0) · er·t.
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There are also k equities satisfying SDE’s

dS
(i)
p,mi,λi,r

(t)

S
(i)
p,mi,λi,r

(t−)
= r · dt + dX

(i)
p,mi−r,λi

(t). (18)

Here, 1 ≤ i ≤ k, all mi
′s > r, and all Hougaard

processes X
(i)
p,mi−r,λi

(t) are independent.

∀p ∈ R1 \ (0, 1), ∃ solution to (18). But it

constitutes price process for an equity only for

p ∈ {0} ∪ [1,∞). The solution is called the

stochastic exponential

S
(i)
p,mi,λi,r

(t) = SE{rt + X
(i)
p,mi−r,λi

(t)} > 0.

In the continuous case (p = 0), solution to (18)
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is the following GBM:

S
(i)
0,mi,λi,r

(t) := S(i)(0)

· exp

{(
mi −

1

2λi

)
t + λ

−1/2
i ·Bi(t)

}
.

Merton’s weights in continuous case maximize

the expected logarithmic utility. Denote them

by W = (w0, w1, ..., wk) such that ∀ 1 ≤ i ≤ k,

wi := (mi − r)/σ2
i = λi · (mi − r), (19)

whereas

w0 := 1−
k∑

i=1

wi.

The expected logarithmic growth rate is

r +
1

2

k∑
i=1

SR2
i = r +

1

2

k∑
i=1

λi(mi− r)2. (20)

Here, SRi is the Sharpe measure (or Sharpe ra-
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tio) for ith asset; SRi := (mi − r)/σi.

r ≥ 0 stands for constant risk-free rate. Let

Rport− r and σport denote the expected excess

return and risk for portfolio, which is assumed

to be comprised of independent assets.

Equation (20) implies the Pythagorean theorem

for Sharpe portfolio performance measure:

SR2
port =

k∑
i=1

SR2
i . (21)

If p 6= 0 in (18), optimal weights differ from

Merton’s weights (19). (see Kallsen (2000)).

But the next result on price process holds for a

scalar multiple of Merton’s weights, where
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∀ 1 ≤ i ≤ k and ∀ fixed κ > 0,

ŵ
(κ)
i := κ · λi · (mi − r)1−p.

Suppose that ∀ t ≥ 0, r.v.’s ξ0(t), ξ1(t), ..., ξk(t)

are the amounts of shares of the corresponding

securities which are held in the portfolio at time

t−. Let vector W correspond to weights ŵ
(κ)
i ’s.

Theorem 8 Suppose that the movements of k

equities satisfy (18). Then for cumulative price

process

S
(W )
p (t) := ξ0(t) · Sb(t)

+

k∑
i=1

ξi(t) · S
(i)
p,mi,λi,r

(t),
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the following SDE is valid:

dS
(W )
p (t)

S
(W )
p (t−)

= r · dt + dXp,m−r,λ(t). (22)

Here, m are λ are obtained from the equations

m− r =

k∑
i=1

ŵ
(κ)
i · (mi − r);

λ · (m− r)2−p =

k∑
i=1

λi · (mi − r)2−p. (23)

Denote the expected excess growth rates by g
(κ)
i

and g(κ), respectively. (23) is closely related

to the Pythagorean theorem for Sharpe ratio,

which follows from additivity of shape param-
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eter φp (10), that is established in V (2004b).

k∑
i=1

SR2
i =

k∑
i=1

(g
(κ)
i − r)

= g(κ) − r = SR2
port

(compare to (21)).

The cumulative price process S
(W )
p (t) given by

(22) is a geometric Lévy process. Hence, it is

the ordinary exponential of some Lévy process,

whose generating triplet is found explicitly.

Observe that under fulfillment of (18), Merton’s

allocation of weights leads to the same structure

of the cumulative price process as those of the

individual assets.

The fact that the additivity of the shape param-
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eter φp is an if-and-only-if condition stipulates

that in the continuous case (p = 0), Merton’s

selection of weights is also necessary for deriv-

ing the optimality of the expected logarithmic

growth rate, which is given by (20).
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Stochastics and Stochastic Rep. 47 (1994), 71–

101.

45


