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The Hedging Problem

� Much has been written on hedging both when it is
possible and when it is not.

� However, less attention is given to constructing use-
ful hedges for prespeci�ed or existing exposures in
high dimensions using options as a static hedge.

� Carr and Wu (2004) have considered hedging long
dated options with positions in shorter term options,
working in one dimension.

� In this context we have completeness as arbitrary
functions of the underlying are spanned by the op-
tions (Green and Jarrow (1987), Nachman (1988)).



Multidimensional Hedging

� To focus attention we will consider a target expo-
sure written on 9 underliers representing the level of
sector ETF 0s three months hence.

� The exposure will be to a positive random variable
whose logarithm is a quadratic function of the 9 log-
arithmic returns.

� The associated matrix of second order cross partials
will be chosen to display both convex and concave
directions by ensuring the presence of both positive
and negative eigenvalues. The hedging assets will be
the option surfaces on all 9 underliers.

� In this multidimensional context options on the un-
derliers do not span the target cash �ow. We thereby
have a context of incompleteness as studied in Carr,
Geman and Madan (2001), or Jaschke and Kuchler
(2001).



The Hedging Probability
Measure

� The �rst question to be faced is the choice of the
probability law under which we study the hedging
problem.

� Numerous authors have employed the physical prob-
ability to manage the risk or approximate the target
cash �ow (Bertsimas, Kogan and Lo (1999), Biagini,
Guasoni and Pratelli (2000), Föllmer and Sonder-
mann (1986)).

� We question the choice of the physical measure and
argue that it is possibly not the recommended choice.

� Under the physical probability most hedging assets
have a nonzero expectation that is either positive or
negative.



� As a consequence algorithms seeking to hedge pre-
speci�ed exposures can be induced into investing in
or shorting the hedging assets with a view to gener-
ating returns, and setting aside the hedging and risk
management concerns.

� We argue that it is critical to proceed under a risk
neutral measure as a base measure under which to
study the hedging problem.



The Hedging Criterion

� The second question to be considered is the choice
of a criterion for the hedge. Many criteria have been
proposed and studied.

� These criteria trade risks and returns in a variety of
ways and generally attempt to model the risk atti-
tudes and preferences of the party holding the resid-
ual risk.

� Examples include the use of mean variance prefer-
ences (Heath, Platen and Schweizer (1999)), others
measure risk by the conditional value at risk (Rock-
afellar and Uryasev (2000)), while some writers em-
ploy expected utility in the presence or absence of
background or endowment risk (Schachermayer (2002)).



� These preference based criteria combine scale and
direction issues possibly altering the hedge if the po-
sition is scaled.

� We shall, however, here take a more market oriented
approach that presumes that one may trade with the
market at a wide range of scales without an adjust-
ment to the terms of trade.



Market Criterion

� Unlike the classical model of the market where one
trades in both directions at the same price we sup-
pose the terms of trade depend on the direction of
trade but not its size.

� In this regard we follow Cherny and Madan (2009,
2010) and model the set of marketed cash �ows as a
convex cone containing the nonnegative cash �ows.

� Such a model for the set of marketed cash �ow re-
sults in closed forms for the bid and ask prices of
cash �ows and we may then either maximize the bid
price for the hedge or minimize the ask price for the
hedge.

� Since we see our target cash �ow as a potential lia-
bility we minimize its ask price here.



Risk Neutral
Multidimensional Laws

� The third question that arises is that of modeling
risk neutrally the joint law of nine underliers.

� As we shall take positions in options on the underliers
to hedge the risk exposure we seek a joint law that
will calibrate simultaneously all option surfaces on a
single day.

� We have employed many models in the exponential
a¢ ne class to calibrate the surface of options on a
single underlier. Here we develop multivariate expo-
nential a¢ ne models. Such exercises require one to
model dependence across a set of underliers.

� We note, however, that options only trade on each
underlier separately and there isn�t a liquid market for
options on portfolios that may explicitly price corre-
lations.



� Hence, the approach we take is a mixture of time
series and option data analysis.



Risk Neutral
Multidimensional Laws

cont�d

� Time series data are employed to model the martin-
gale component of the log price relative as a linear
mixture of independent variates.

� The independent components are identi�ed by an ap-
plication of independent components analysis. Such
an analysis delivers as an output the matrix of asset
exposures to component risks.

� For our risk neutral law we model the independent
components using a Sato process (Carr, Geman, Madan
and Yor (2007)) taking the exposure matrix as esti-
mated from the time series analysis.



� Thus we develop a joint characteristic function for
all underliers allowing one to compute option prices
for any strike, any maturity and any underlier.

� We then calibrate this joint law to all surfaces simul-
taneously. Our illustration employs 9 underliers and
a Sato process based on the variance gamma law at
unit time for each component.

� The Sato process uses a single scaling parameter for
all underliers and we have a model with 28 parame-
ters for the nine surfaces.



Joint Risk Neutral Laws

� Our starting point is the recognition that in the Gaussian
or Brownian case, one builds dependence by model-
ing multidimensional risks as a linear combination of
independent Gaussian variates.

� Here we generalize to considering a linear combina-
tion of independent processes with independent in-
crements.

� When these independent processes are in addition
time homogeneous, they are Lévy processes.

� However, given that we wish to model risk neu-
tral option surfaces across strike and maturity we
consider the particular class of time inhomogeneous
processes known as Sato processes (Carr, Geman,
Madan and Yor (2007)).



� We shall also consider Lévy processes that are partic-
ularly suitable when the focus is on a single maturity.



ICA

� In identifying the joint risk neutral law one has to
determine both the coe¢ cients of the linear com-
bination and the risk neutral law of the supposed
independent components.

� In general this gives us too many parameters to be
inferred from the option surfaces. We shall instead
determine the matrix of asset exposures to indepen-
dent risks from a time series analysis and then we
employ this matrix as an input in determining the
risk neutral law for the components.

� For the time series analysis we follow Madan and Yen
(2008) and Madan (2006) in applying independent
components analysis to identify both the exposure
matrix and the data on the independent components.



ICA Remarks

� Independent components analysis (ICA, Hyvärinen,
Karhunen and Oja (2001)) and in particular the fast
ICA algorithm (Hyvärinen (1999)) exploits the obser-
vation that signals have non-Gaussian distributions
that approach Gaussian distributions when contam-
inated by noise.

� Hence the algorithm �rst performs a principal com-
ponents analysis (PCA), and noting that every rota-
tion of a PCA is an equivalent PCA, the ICA proce-
dure seeks a rotation matrix that maximizes a metric
of non-Gaussianity to try and get back to the original
signal.

� The procedure has been tested in the signal process-
ing context and it has been demonstrated that unlike
PCA, ICA can recover original signals.



� It is also noted that if the original data is multivariate
Gaussian, then there are no signals to be found and
the algorithm fails.

� Fortunately, for �nancial data on daily returns the
Gaussian assumption fails and an ICA delivers the
required exposure matrix.



Models for the joint risk
neutral laws of n assets

� Let S(t) = (S1(t); � � � ; Sn(t)) denote the vector of
n stock prices at time t; with Xk(t) = lnSk(t) for
k = 1; � � � ; n:

� We suppose that the vectorX(t) = (X1(t); � � � ; Xn(t))
is a linear combination of independent processes Yk(t)
and

X(t) = AY (t):

� One may employ time series analysis to identify the
exposure matrix A and the statistical or physical law
of the process Y (t):

� Since our interest is in the risk neutral law we employ
time series data just to identify the exposure matrix
A:



The �rst model (Lévy)
termed VGICA

� A �rst risk neutral law for Y (t) models each com-
ponent as an independent Lévy process and here we
employ the variance gamma process.

� We then have 3n parameters �k; �k; �k such that
the zero mean process for Yk(t) is

Yk(t) = �k (gk(t)� t) + �kWk(gk(t))

where gk(t) are independent gamma processes with
unit mean rate and variance rate �k and Wk(t) are
independent Brownian motions also independent of
the gamma processes.

� The characteristic functions for the processes Yk(t)
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� From the independence of the processes Yk one eas-
ily derives the joint characteristic function for the
vector process X(t) as
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� The stock prices for the n assets are related to the
processes X(t) by
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where the convexity correction coe¢ cients are

!j = �
NX
k=1

 k(�iAjk):

� The joint characteristic function for the logarithm of
all the stocks under the V GICA model is then
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The second model (Sato)
VGSSDICA

� We now consider a Sato process for the independent
components.

� In this case we model the centered law for the loga-
rithm of the stock as before but the components of
the vector Y (t) are now not Lévy processes but Sato
processes.

� We therefore obtain the marginal distribution of each
component at each time t by scaling and suppose
that

Y (t)
(d)
= tY (1)

where the scaling coe¢ cient is common across com-
ponents.



� In this case we have scaling as a vector for now

X(t) = AY (t)
(d)
= AtY (1)

= tAY (1)

= tX(1)



The Multivariate Lévy
System

� Each component is now a process of independent but
time inhomogeneous increments with a jump com-
pensating Lévy system for the kth component Ykt
of the form

Lk(yk; t)dykdt:

� The speci�c form of the function Lk may be obtained
from Carr, Geman, Madan and Yor (2007) in terms
of the Lévy density lk(y) of the unit time random
variable Yk(1) as

Lk(yk; t) = �sign(yk)
h0k
�
yk
t

�


t1+
; yk 6= 0;

hk(yk) = jykjlk(yk):



� By independence the Lévy system for the vector process
Yt is given by

LY (y; t)dydt = dt
nX
k=1

Lk(yk; t)dyk

� We may write the Lévy system for X(t) an additive
process as

LX(x; t)dxdt = dtdx
1

det(A)

nX
k=1

Lk
��
A�1x

�
k
; t
�
:



The Characteristic
Function

� The joint characteristic function of the vector Xt is
now given by

E
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� The joint characteristic function for the logarithm of



the vector ln(S(t)) under V GSSDICA is
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Estimation Procedure

� The risk neutral estimation of V GICA or V GSSDICA
begins with a time series analysis conducted for the
purpose of estimating the exposure matrix A: For
this we take times series data on daily returns

xt = (x1t; � � �xnt)

=

 
ln

 
S1(t)

S1(t� 1)

!
; � � � ; ln

 
Sn(t)

Sn(t� 1)

!!
for T days.

� We form the matrix of demeanded daily return data
by subtracting the sample means for ech component
to construct the T � n matrix R of centered re-
turns. We apply to this matrix the fast ICA algorithm
that returns a matrix A and data on the independent
components constructed as

yt = A�1xt:



� The matrixA composes a PCAmatrix with a search
for an optimal rotation matrix that succesively max-
imizes the expectation of the logarithm of the cosine
of the implied factor return ykt in the sample.



� With the exposure matrix estimated from such a fast
ICA algorithm we may now employ the Fourier trans-
form methods of Carr and Madan (1999) to price
options on all strikes, maturities and underliers to si-
multaneously calibrate all option surfaces to identify
the joint risk neutral law.

� The joint characteristic functions and take as inputs
resepctively 27 and 28 parameters for the 9 sets of
V G parameters with 9 underliers and for the Sato
process the scaling coe¢ cient .

� When computing an option price, in addition to the
strike and maturity one must indicate as an input the
stock or underlying asset to enable the pricing rou-
tine to construct the appropriate marginal character-
istic function that is inverted for the option price.

� The risk neutral parameters for the joint law are es-
timated by minimizing the root mean square error of
market price from model price for all option surfaces
taken together.



The Hedging Problem

� This section describes in detail the speci�c hedging
problem to be solved.

� We present in turn the target cash �ow to be hedged,
the structure of the hedging assets, and the hedge
objective.



The Target Cash Flow

� The target function to be hedged on the joint space
of all underliers is typically some estimated value
function some time in the future.

� We illustrate here by taking a general translog func-
tion on the underliers de�ned as

ln(f(S)) =
nX
i=1

�i ln
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Si0

!
+
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2

X
ij

�ij ln
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Si0

!
ln

 
Sj

Sj0

!
:

We wish to hedge the multivariate function f(S)
seen as a function of the stock prices of the underliers
some three months out.



The Hedging Assets

� We take for hedging assets the n underliers and op-
tions on these underliers with a three month maturity
and a range strikes. We may standardize the problem
by taking all initial prices at unity.

� The options then have strikes expressed in money-
ness with strikes below unity being put options and
above unity we employ call options. We treat the
underlying model as that for forward prices and work
with zero rates and dividend yields.

� We take the strikes to range from :75 to 1:25 in
steps of 0:025: We then have 21 options on each
of 9 underliers with 189 options and 198 hedging
assets for our 9 underliers.

� Viewing the underlier as a zero strike call we have
22 strikes per underlier.



� The terminal option payo¤ to strike kj for underlier
i is

cij(Si) =
�
Si � kj

�+
+ 10<kj<1

�
kj � Si

�
and for hedge positions �ij in the option with strike
kj on the ith underlier the hedge payo¤ is

g(S; �) =
X
i

X
j

�ij
�
cij(Si)� wij

�
where wij is the market price of option j on the ith

underlier.

� Under the models we shall consider the target cash
�ow is not in the span of the possible hedge cash
�ows. For every possible candidate hedge position
� = (�ij) the residual cash �ow

r(S; �) = g(S; �)� f(S)

is nonzero.



The Hedge Objective

� We need to formulate an objective function to eval-
uate di¤erent possibilities for the residual cash �ows.

� In complete markets the residual net of hedge costs
is zero and we just �nd the replicating portfolio and
value the cash �ow f(S) at the cost of replicationP
i
P
j wij: The hedge is clear.

� For the current context of incomplete markets this is
not possible and the hedge is not clear.



Hedge Objective

� Many suggestions for a hedging criterion have been
made in the literature, including minimizing vari-
ance, super or sub replicating, minimizing some other
norm, or maximizing expected utility.

� The objectives of super or sub replicating are often
unrealistic, in that they may not even be possible.

� The various norms treat overshoots and shortfalls
symmetrically though only shortfalls are a problem.

� Expected utility as a criterion we �nd unsatisfactory.
It is focused on modeling the preferences of a par-
ticular person.

� Furthermore the hedge, its cost and associated reser-
vation prices for risk vary with the size of the trade.



Modeling Markets

� We follow instead a market oriented approach that
shifts attention from modeling risks to be held by
individuals to risks held in markets on terms de�ned
by markets.

� The essentials of this theory are set out in Cherny
and Madan (2010) following on from Carr, Geman
and Madan (2001) and Cherny and Madan (2009).

� The main idea of this approach to modeling markets
begins on replacing the law of one price for liquid
markets by the law of two prices.

� Hence market participants may still trade with the
market any amount at the going price with the pro-
viso that the price now depends on the direction of
trade.



� One then observes that the set of cash �ows seen
as random variables that one may deliver to market
at zero cost form a convex cone of random variables
that contains the set of nonnegative cash �ows.



Bid and Ask Prices

� Formally the cash �ows acceptable to the market at
zero cost are random variables X with the property
that EQ[X] � 0 for all measures Q in a convex set
of measures D that support the acceptability.

� Given a class of H of hedge cash �ows attainable by
trading in markets at zero cost Cherny and Madan
(2010) de�ne the risk neutral measuresR as all mea-
sures satisfying EQ[H] = 0 for all H 2 H:

� They then show that the ask price for X, a(X) is
given by

a(X) = sup
Q2D\R

EQ[X]:

� Similarly the bid price is given by

b(X) = inf
Q2D\R

EQ[X]:



� The risk neutral measures play an important role in
the formulation of these pricing problems and it is
critical that D is large enough to in fact meet the
set of risk neutral measures.

� In fact if D \R is empty there is a hedging as-
set that is strictly acceptable to the market and this
should not be the case if the hedging assets are cor-
rectly priced.



Abstract Hedging Problem

� One may formulate the hedging problem as that of
minimizing the post hedge ask price whereby

a(X) = inf
n
ajEQ[a+H �X] � 0; all Q 2 D

o
:

� The corresponding hedging problem associated with
the bid price is

b(X) = sup
n
bjEQ[X � b�H] � 0; all Q 2 D

o
:



Operational Hedging
Problem

� To make these market oriented hedging problems for
the bid and ask price operational one has to de�ne
opeartional cones of cash �ows acceptable to the
market. For this we begin with a single risk neutral
measure Q0 that one identi�es and we force a non-
empty intersection of D with R by placing this base
measure in our set D:

� Now accepting all cash �ows with a positive expec-
tation under this single measure is too wide a cone
and it is in fact a half space. We take the set of zero
cost marketable cash �ows to be smaller by requiring
a positive expectation under a much larger class of
measures.

� Following Cherny and Madan (2009,2010) we de�ne
acceptable cash �ows in terms of the distribution
function FX(x) of our cash �ow X under Q0:



� For a speci�c concave distribution function 	(u) de-
�ned on the unit interval and mapping to the unit
interval we de�ne X to be acceptable just ifZ 1

�1
xd	(F (x)) � 0;

or the expectation of the cash �ow is positive under
a concave distortion of its distribution function.

� When working with distribution functions one may
identify the base measure to be the uniform distri-
bution on the unit interval and identify distribution
functions F (x) with their inverses G(u) = F�1(u):
One then speaks equivalently of acceptable inverse
distribution functions. These are now such that we
have a positive expectation for all measures with den-
sities Z(u) where the associated distribution func-
tion L0 = Z satis�es L � 	 Cherny and Madan
(2010).



The Distortion Used

� The particular concave distortion studied in Cherny
and Madan (2009, 2010) that we employ here is
termed minmaxvar and is de�ned by

	(u) = 1� (1� u
1
1+ )1+:

� In terms of this distortion one may de�ne the ask
price problem as

a(X) = min
�ij

�
Z 1
�1

xd	(FX(x))

X = r(S; �):

� We solve the ask price hedge problem by numerical
optimization to determine the hedge positions �ij in
the 198 hedging assets.



Calibration of VGICA and
VGSSDICA

� Time series data on the daily levels of sector ETF�s
for a thousand days from 2005 January 3 to 2009
June 5 were employed to construct an ICA decom-
position of returns taken as log price relatives. The
ETF�s employed were xlb, xle, xlf, xli, xlk, xlp, xlu,
xlv, and xly.

� We present in Table 1 by way of a summary the levels
of annualized mean, volatility, skewness, and kurtosis
for the 9 ETF�s in alphabetical order and the 9 ICA
factors in the order of extraction.



TABLE 1
Summary Statistics returns and ICA factors

Mean Volatility Skewness Kurtosis
xlb -0.01 -0.50 0.32 18.53 -0.19 0.90 9.71 29.91
xle 0.03 7.32 0.39 16.43 -0.53 -0.53 10.30 11.98
xlf -0.23 -2.24 0.49 16.63 0.07 -0.20 10.49 8.67
xli -0.06 4.04 0.27 19.86 -0.22 -0.13 9.30 6.84
xlk -0.03 2.97 0.26 26.63 0.06 -0.04 10.43 8.29
xlp -0.02 1.09 0.14 15.58 -0.42 0.13 22.59 6.83
xlu -0.04 -0.08 0.24 17.01 0.50 -0.13 13.37 4.45
xlv -0.05 -7.28 0.20 20.32 -0.09 -0.11 19.32 5.09
xly -0.09 -2.45 0.28 15.71 -0.26 0.12 8.89 5.05



� We see from Table 1 that the initial factors that
are the most non-Gaussian have substantial levels of
skewness and kurtosis.

� Table 2 presents the matrix A of factor exposures
needed for the calibration of the risk neutral joint
law under the V GICA and V GSSDICA models.

� We also estimated by maximum likelihood marginal
variance gamma laws on the time series of the in-
dependent components as given by equation. We
thus have a full speci�cation of the physical law for
the martingale component of log price relatives as
a linear mixture on independent variamce gamma
processes.



TABLE 2
Factor Exposure Matrix extracted from an application of Independent Components Analysis 
to daily returns in basis points
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9

xlb 111.67 -84.13 -27.88 73.56 -22.14 -52.94 87.18 -54.41 0.11
xle 149.75 -95.98 -89.79 41.53 -31.07 -40.51 18.50 -78.43 -105.58
xlf 88.06 -279.65 -43.45 -5.26 -24.93 -57.04 38.20 -1.12 42.49
xli 93.27 -79.23 -32.70 22.70 -20.49 -99.67 18.24 -15.19 23.81
xlk 87.21 -79.25 -74.34 53.14 -12.85 -29.66 -3.51 -18.31 49.41
xlp 52.26 -38.34 -53.90 -21.12 24.58 -28.64 29.77 -18.15 27.18
xlu 105.00 -39.35 -69.66 9.99 3.24 -14.49 42.42 45.74 -21.72
xlv 105.08 -38.08 -11.23 -26.78 -19.47 -6.87 17.84 -10.47 32.95
xly 63.85 -94.06 -77.36 -0.18 -71.26 -60.22 41.17 -13.17 48.94



Risk Neutral Data

� We next extracted data on the option prices for all
out of the money options on all 9 underliers for 2009
July 21 with maturities between three months and a
year.

� There were 167 option prices in all. We estimated
the model V GICA with 27 parameters and the
model V GSSDICA with 28 parameters to simul-
taneously determine the variance gamma laws of the
9 independent components with the exposure of each
ETF to the factors as provided by the exposure ma-
trix A displayed in Table 2.

� We thus have two complete speci�cations of the risk
neutral law as linear mixtures of independent Lévy
and Sato processes based on a variance gamma law
at unit time.



Physical and Risk Neutral
Correlations

� Our �rst exercise is to compare for the �rst time
statistical and risk neutral correlations. For this pur-
pose we generate three sets of 10000 readings on
the 9 underliers from the estimated statistical and
the two estimated risk neutral laws V GICA and
V GSSDICA.

� We then compute the correlation matrix of the 9 un-
derliers for each of the three simulations. We present
in Table 3 the three correlation matrices.

� We observe as we expected that the risk neutral cor-
relations are much higher than their statistical coun-
terparts.



Table 3
Statistical Correlations between the 9 sector ETF's
xlb xle xlf xli xlk xlp xlu xlv xly

xlb 1.0000 0.7593 0.6582 0.8084 0.7390 0.6311 0.6224 0.6111 0.7270
xle 0.7593 1.0000 0.5341 0.6464 0.6246 0.5222 0.6639 0.5006 0.5609
xlf 0.6582 0.5341 1.0000 0.7626 0.7326 0.6527 0.5258 0.6299 0.7983
xli 0.8084 0.6464 0.7626 1.0000 0.8164 0.7262 0.6062 0.6833 0.8496
xlk 0.7390 0.6246 0.7326 0.8164 1.0000 0.7260 0.6268 0.6646 0.8236
xlp 0.6311 0.5222 0.6527 0.7262 0.7260 1.0000 0.6584 0.7237 0.7428
xlu 0.6224 0.6639 0.5258 0.6062 0.6268 0.6584 1.0000 0.6164 0.5932
xlv 0.6111 0.5006 0.6299 0.6833 0.6646 0.7237 0.6164 1.0000 0.7066
xly 0.7270 0.5609 0.7983 0.8496 0.8236 0.7428 0.5932 0.7066 1.0000

Risk Neutral Correlations between the 9 sector ETF's as per VGICA
xlb xle xlf xli xlk xlp xlu xlv xly

xlb 1.0000 0.9827 0.9665 0.9769 0.9743 0.9816 0.9808 0.9574 0.9833
xle 0.9827 1.0000 0.9841 0.9845 0.9963 0.9809 0.9744 0.9773 0.9889
xlf 0.9665 0.9841 1.0000 0.9721 0.9894 0.9732 0.9392 0.9493 0.9919
xli 0.9769 0.9845 0.9721 1.0000 0.9823 0.9806 0.9529 0.9507 0.9886
xlk 0.9743 0.9963 0.9894 0.9823 1.0000 0.9703 0.9558 0.9600 0.9876
xlp 0.9816 0.9809 0.9732 0.9806 0.9703 1.0000 0.9776 0.9738 0.9868
xlu 0.9808 0.9744 0.9392 0.9529 0.9558 0.9776 1.0000 0.9835 0.9585
xlv 0.9574 0.9773 0.9493 0.9507 0.9600 0.9738 0.9835 1.0000 0.9594
xly 0.9833 0.9889 0.9919 0.9886 0.9876 0.9868 0.9585 0.9594 1.0000

Risk Neutral Correlations between the 9 sector ETF's as per VGSSDICA
xlb xle xlf xli xlk xlp xlu xlv xly

xlb 1.0000 0.9673 0.9239 0.9489 0.9507 0.9706 0.9551 0.9111 0.9679
xle 0.9673 1.0000 0.9527 0.9516 0.9915 0.9651 0.9532 0.9537 0.9713
xlf 0.9239 0.9527 1.0000 0.9088 0.9726 0.9297 0.8520 0.8634 0.9751
xli 0.9489 0.9516 0.9088 1.0000 0.9463 0.9597 0.8855 0.8679 0.9681
xlk 0.9507 0.9915 0.9726 0.9463 1.0000 0.9449 0.9112 0.9140 0.9734
xlp 0.9706 0.9651 0.9297 0.9597 0.9449 1.0000 0.9509 0.9314 0.9723
xlu 0.9551 0.9532 0.8520 0.8855 0.9112 0.9509 1.0000 0.9741 0.9007
xlv 0.9111 0.9537 0.8634 0.8679 0.9140 0.9314 0.9741 1.0000 0.8907
xly 0.9679 0.9713 0.9751 0.9681 0.9734 0.9723 0.9007 0.8907 1.0000



Construction of Hedge

� The target cash �ow (tcf) is speci�ed on de�ning the
vector � and the matrix � of equation. This vector
and matrix was randomly generated with � organized
to have 5 positive and 4 negative eigenvalues.

� The vector � and the matrix � is displayed in Table
4.

� We employed the path space generated by V GSSDICA
and constructed on this path space the cash �ows to
the hedging assets.

� The hedge cash �ow is on a zero cost basis and for
this we need to subtract the price.

� To ensure sample space risk neutrality the prices used
were the sample means to the payo¤s.



Table 4
Alpha Vector and Beta Matrix for Target Cash Flow

alpha 2.2225 0.1203 -0.3723 0.0988 -0.3669 -0.1686 1.5497 0.5105 -0.2561

0.5670 -0.0718 0.0825 -0.0933 0.0858 -0.3342 -0.0987 -0.0036 -0.0824
-0.0718 -0.0579 0.1781 0.2187 0.1270 -0.1655 -0.0141 -0.1316 0.2474
0.0825 0.1781 0.4880 0.0628 0.0942 0.0603 0.0141 0.3479 -0.0574

-0.0933 0.2187 0.0628 0.0205 -0.0628 -0.2002 0.0343 -0.0531 0.1941
Beta 0.0858 0.1270 0.0942 -0.0628 0.4560 0.1591 0.2599 -0.1412 0.1174
Matrix -0.3342 -0.1655 0.0603 -0.2002 0.1591 0.4587 -0.1374 -0.0021 -0.2162

-0.0987 -0.0141 0.0141 0.0343 0.2599 -0.1374 0.4846 0.1479 -0.1097
-0.0036 -0.1316 0.3479 -0.0531 -0.1412 -0.0021 0.1479 0.0335 -0.0636
-0.0824 0.2474 -0.0574 0.1941 0.1174 -0.2162 -0.1097 -0.0636 0.0495



� We also included the cash �ow to the underlier and
this gave us 22 hedging assets for each of 9 under-
liers.



Hedging Results

� We then �rst evaluated the ask price usingminmaxvar
at a stress of :75 with � = 0: The unhedged ask price
apuh was

apuh = 29:7975

= �
Z 1
�1

xd	(F(�tcf)(x):

� The resulting unhedged cash �ow cfuh is de�ned as

cfuh = apuh� tcf:

We then took positions in 21 OTM options on each
of the nine underliers along with the underlier for
three months. We constructed the residual cash �ow
(rcf) for the hedge � as

rcf = �0H � tcf

where H is the sample matrix of hedge cash �ows.
The hedges are zero cost by construction and are



all self �nanced. We then constructed the ask price
(aph)for the hedged cash �ow

aph = 7:9802

= �
Z 1
�1

xd	(F(�0H�tcf)(x)

� We then formed the hedged cash �ow cfh by

cfh = aph+ �0H � tcf:

� We observe that the hedge enables us to signi�cantly
reduce the ask price for the target cash �ow using
the same level of acceptability.

� We present in graphs of the histogram for the two
unhedged and hedged cash �ows over a sample space
of 10000 paths on the 9 underliers modeled as linear
mixtures of independent Sato processes as calibrated
to the 9 option surfaces on 20090721:
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Figure 1: Histogram of unhedged cash �ows with an ask
price of 29.79.



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Histogram of Hedge Cash Flow

Cash Flow

P
ro

ba
bi

lit
y

Figure 2: Histogram of hedged cash �ow priced at 7.98
with a hedge position taken in 21 options for each of the
9 underliers along with the underlier itself. This is a set
of 198 zero cost hedging assets.



Table 5
Cost of Hedge
Sector Cost
xlb 0.5455
xle 0.2119
xlf 0.9464
xli 0.2902
xlk 0.1477
xlp -0.1026
xlu 0.5139
xlv 0.2402
xly 0.0375



� The cost of the hedge in total was 2:8307: The cost
by sector is provided in Table 5.

� We present in Table 6 the precise hedge positions
taken in all the options and underliers.



Table 6 
Hedge Positions in 21 Out of the Money Options and the underlier for maturity 3 months

strike P/C xlb xle xlf xli xlk xlp xlu xlv xly
0.75 P 4.5925 1.8194 0.2963 2.5090 2.5031 -0.4794 9.9790 1.6879 2.3785

0.775 P -1.6152 1.1514 -2.9564 -4.0867 -1.4656 -0.6647 -10.7183 -0.6860 -0.8081
0.8 P 2.2913 -4.1598 2.8671 2.8633 -1.0068 -1.4729 3.3972 1.5505 -1.8389

0.825 P 0.1688 3.1227 -0.2310 -2.3088 3.2153 0.5183 0.4924 -0.6767 1.4380
0.85 P -0.9755 5.3059 0.9014 2.0639 -2.3413 0.5677 2.0982 1.0997 -0.9950

0.875 P 2.5994 -5.3263 1.2194 -0.9052 2.1684 -0.6073 0.6428 -0.5764 -1.2281
0.9 P -0.6787 1.3170 1.1087 -0.4986 -0.5374 0.3990 3.1002 0.9880 1.2501

0.925 P 0.7934 0.0080 0.8821 1.4132 0.6110 -0.6663 -1.4748 -0.5459 -1.6192
0.95 P 0.8259 1.1369 1.2913 0.1193 -0.1537 0.0238 0.5783 1.2591 0.2845

0.975 P 1.1040 0.5326 1.8428 -0.1423 0.6950 -0.7029 1.3198 0.2870 -0.3820
1 C 0.5400 -2.2099 0.7585 0.8152 1.1407 0.6419 0.1112 -0.0800 -0.6713

1.025 C 1.5066 1.9724 2.6373 0.8546 -0.5331 -0.5506 0.2359 1.2803 0.4083
1.05 C 0.6959 -1.5130 2.0608 0.1855 2.2503 -0.4315 0.4747 -0.6091 -0.6723

1.075 C 1.3297 0.9522 3.5348 0.1772 -2.2083 0.7829 -1.7348 2.3734 -0.4831
1.1 C 2.6722 -2.7876 0.6956 1.3226 3.5492 -1.4083 3.1243 -2.2366 -0.8022

1.125 C 3.9857 4.8191 8.9503 -1.9009 -0.7380 1.1909 -1.6110 4.6155 7.8555
1.15 C -5.4516 -8.8295 -1.3949 3.9766 1.8327 -1.7712 -3.1211 -2.8195 -11.2519

1.175 C 19.1746 20.3424 4.7143 -6.4690 1.7186 0.0603 20.0147 1.3232 38.5919
1.2 C -15.2501 347.8769 6.7715 9.9710 19.3380 3.9919 -33.3232 1.9873 -72.2486

1.225 C 11.2210 437.6256 -1.5936 -14.0622 -17.1515 -3.2589 76.1461 -3.1698 44.0100
1.25 C 4.5303 431.3317 25.6387 46.8324 -15.8373 -3.5527 484.0120 4.0598 323.6196

0 C 12.5527 3.6580 3.9789 0.6762 2.4006 -3.9598 12.3758 2.6352 0.7210



Conclusion

� We illustrate the hedging of a complex position on
multiple underliers using the options surface of all
underliers in a context where exact replication is not
possible and residual risk must be held.

� Following Cherny and Madan (2010) we determine
the hedge position to minimize the ask price that
makes the post hedge residual risk acceptable to a
prespeci�ed level.

� It is shown that this requires one to use the risk
neutral law on the set of underlying risks.

� A joint risk neutral law is estimated from multiple
option surfaces by specifying the joint law as a linear
combination of independent components.



� The independent components are estimated by an
application of independent components analysis on
time series data for the underliers.

� Once the exposure matrix has been estimated, one
may employ the joint characteristic for the logarithm
of all the underlying returns to calibrate the risk neu-
tral law to the option surfaces taken together.



� The risk neutral law is compared to the statistical law
and we show that risk neutral correlations are signif-
icanlty greated than their statistical counterparts.

� This has been suspected but never really estimated
given the di¢ culty in accessing joint risk neutral laws
as only options on assets taken marginally are traded.

� With the additional hypothesis of a linear factor model
estimated from time series analysis we calibrate a
joint risk neutral law.

� We observe that the availability of a hedge signif-
icantly reduces the ask price for a preset level of
acceptability.

� We envisage that tracking the post hedge ask price
of a position may serve as an early warning indicator
of when a liability is getting too expensive to hold
giving one access to market signals for reducing cer-
tain positions.




