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Introduction

We propose a pricing model for inflation-linked derivatives based on the premise
that, to be successful, an inflation model has to take into account the central
bank reaction function to explain the co-movement of interest rates and inflation.

To achieve this, we adapt elements of a mainstream macroeconomic model (the
DSGE model with a Taylor rule) and price derivatives in a no-arbitrage setting.
We formally prove that the no-arbitrage conditions hold in the inflation market
and verify that the chosen macroeconomic model dynamics are consistent with
the no-arbitrage framework.

The proposed approach is more ambitious than those currently most used in the
industry (i.e. the Jarrow-Yildirim and the BGM-I modelling strategies) since the
co-movement of interest rates and inflation is not taken as a given in our
approach but is the result of central bank policy.

We propose a parsimonious strategy to calibrate the model to nominal interest
rates, inflation term structures and smiles. We calibrate the model to recent
market data and show that the calibration scheme is satisfactory.
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The inflation market

Price indices quantify the evolution of price levels in the economy. Such indices
are defined by considering the prices of representative baskets of goods and
services, normalised to 100 at a given past date (the base).

We let denote It the level of the chosen price index at time t.

The realised inflation rate πt for the interval [s, t], expressed in an annual basis,
is given by the annualised percentage growth rate on the price index:
πi = (

It
Is
− 1) 1

t−s.

Inflation-linked instruments are traded assets for which the payoff depend on one
(or more) price indices:

Plain Vanilla: Inflation-linked Bonds, Zero-coupon Inflation Swaps.

Options: Inflation Caps/Floors.

Exotics: Inflation Range Accruals, Inflation Spread Options, Inflation Hybrids.
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The pricing problem

We wish to price inflation-linked contingent claims in a no-arbitrage setting.

We need (at least approximate) closed form expressions for nominal and
inflation-linked bonds: this allows one to calibrate the model to the term
structures of nominal rates and inflation.

Ideally we want to be able to reproduce the skew/smiles observed in vanilla
option markets, both for nominal and inflation caps/floors.

We would like to keep the modelling framework as general as possible, and
specify the distributions of the state variables only when necessary.

We want to start from a realistic description of the economy.
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Background

The Forex Analogy is the cornerstone of most inflation-linked pricing models:
it assumes the existence of both a nominal and a real interest rates system, each
with a term structure. The price index plays the role of the exchange rate
between the two systems: therefore all the FX pricing theory with stochastic
rates can be easily “recycled”. See Hughston (1998).

Jarrow-Yildirim (2003) propose to use two correlated Hull-White processes for
the nominal and real short interest rates. The price index is modelled as a
geometric brownian motion. However, real-rate volatilities or nominal/real
correlations are difficult to mark in this model.

BGM-I. The BGM technology has been used to model the nominal and real
term structures with more than one sources of randomness (as opposed to JY).
Proposed in Mercurio (2005).

Hughston-Macrina (2008) assume the existence of a nominal and real pricing
kernel and used a microeconomic approach based on the convenience yield of
the money supply to determine the dynamics of the price index.
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Market set-up

The problem is perhaps best approached in a discrete-time setting, where it is
easier to control technicalities, and keep track of the underlying assumptions.

Let {ti}i=0,1,2,... denote a sequence of discrete times, not necessarily equally
spaced, where t0 is the present and ti+1 > ti for all i ∈ N0.

We assume the sequence {ti} is unbounded: for any given time T there exists a
value of i such that ti > T .

The market will be represented with the specification of a probability space
(Ω,F ,P) with a “market filtration” {Fi}i≥0.

For simplicity, we often write Xi = Xti. This is not meant to suggest that the
dates are equally spaced.

We assume that arbitrage is not possible in the market: if no probability
measure is specified, the expectation is understood to be taken with respect to
the real-world measure (P). To perform a measure change from the physical
measure P to the risk-neutral measure Q, we introduce the Radon-Nikodym
derivative μi = (dQ/dP) |ti.
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Pricing kernel - the properties

We assume that the economy is structured in a way such that arbitrage is not
possible. We take the view that arbitrage-freeness is equivalent to the existence
of a pricing kernel {ψi} . The pricing kernel has the following properties:

1. The process {ψi} is a strictly positive supermartingale, with ψ0 = 1.
2. The pricing kernel is given by ψi =

∏i
j=1 (1 + τjnj)

−1μi, where μi is the
Radon-Nikodym derivative (dQ/dP) |ti, τi the year fraction and ni the
short-term nominal interest rate. Equivalently we can write: ψi = μi/Bi.

3. For each non-dividend paying asset h paying the single cashflow HN at time
TN , we have: hiψi = EP[ψNHN |Fi], i.e. hiψi is a P-martingale. If dividends
{Di} are paid, this becomes hiψi +

∑i
0 ψjDj = EP[ψNHN +

∑N
0 ψjDj|Fi].

4. The pricing kernel {ψi} is the inverse of the numeraire chosen to rescale the
asset processes to P-martingales.
5. The pricing kernel is related to nominal bond prices via the following:
P (ti, ti+k) = Eiψi+k/ψi, ∀k ∈ N.
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Traded assets

We assume the existence of the following:

1. The short-term nominal interest rate ni – set by the central bank – is the
interest agreed at time ti−1 and paid at time ti by the bank account on the
balance at time ti−1. The process {ni} is a previsible process, i.e. the short
term nominal interest rate ni is Fi−1-measurable.
2. The bank account Bi =

∏i
j=1(1 + τjnj), with B0 = 1. Here τi represents the

year fraction between times ti−1 and ti. Since the interest rate ni is
Fi−1-measurable, the bank account process {Bi} is a previsible process. At
time ti−1 the cash-flow that will occur at time ti is already known: this is why
the bank account is often referred to as the riskless asset.

3. A system of discount bonds P (ti, tN), that pay one unit of currency at time
tN and have the following properties:

• P (ti, tN) = EQ
[∏N

j=i+1 (1 + τjnj)
−1
]

• P (ti, ti) = 1, ∀i
• P (ti, tN) > 0, ∀i < N

• limN→∞ P (ti, tN) = 0
• P (ti, ti+1) = Bi/Bi+1.
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4. The price index process {Ii} that describes the evolution over time of the
price level.

5. A system of zero-coupon inflation index swaps (ZCIISs), such that the
floating leg pays (Ii+M/Ii)− 1 and the fixed leg pays (1 +XM)

Mτi − 1. The
strikes Xi are quoted at time ti for all maturities tM > ti.

6. A system of index-linked zero coupon bonds PI(ti, tM), which pay at
maturity tM the cash equivalent of the price index IM . These bonds are
quoted at time ti for all maturities tM > ti and have the following properties:

• PI(ti, tM) = Ei [ψMIM ] /ψi
• PI(ti, ti) = 1, ∀i
• PI(ti, tM) > 0, ∀i < M.
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FRN representation for the real pricing kernel

By using the set-up introduced so far, we can relate the pricing kernel ψi, the
real rate ri and the price index Ii via the following formula:

Ii =
1

ψi
Ei

∞∑

j=i+1

τjrjψjIj. (1)

This condition is equivalent to

ψRi = Ei
∞∑

j=i+1

τjrjψ
R
j . (2)

This result is model-independent, since no assumptions on the dynamics of
interest rates, bond prices or price indices have been made.
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Extension to illiquid assets

We show how the result (1) can be extended to any derivative written on a
generic underlying index Ii. In fact no assumptions on the index were made,
therefore Ii is not necessarily a price index, but can be any index whose value is
known by market agents without ambiguity.

This makes the analysis presented above usable across different asset classes,
regardless of how storable or tradable the index is. Examples are:

Electricity is not storable and a significant derivative market exists. We follow
the same argument seen in the previous section and assume the existence of a
market where electricity-index bonds are traded. This bond pays the
electricity-index value at maturity, and can be rescaled by the current index level
to obtain the electric bond. This instrument is then used to establish again the
relationship (1) in the electricity market, which allows to write the product of
the current electricity index and the current pricing kernel as the expected value
of the infinite sum of its future values multiplied by the pricing kernel and the
corresponding rate.

Property derivatives are swaps related to a property index, either residential or
commercial. This market has significantly increased in size during the last five
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years, allowing investors to take a view on property without physically owning it.

Weather derivatives are used by companies whose cash-flows are dependent on
the weather, like utilities, hotels, construction companies or golf clubs. The size
of this market has not become significant as liquidity is very scant.

Longevity derivatives are a fledging asset class, where a coupon linked on the
average life of a population is exchanged at maturity. Life insurance companies
are long survival risk, whereas pension funds are short: investment banks can act
as intermediaries and make some margins.

Emissions derivatives allow polluting companies to trade the emission credits in
the market. The liquidity of this market is improving.
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A model for the economy

The inflation rate is defined b πi = ((Ii/Ii−1)− 1)/τi. This is the annualised
percentage growth rate of the price index.

The output gap xi is defined by the difference between the actual and the
potential log-linearised growth rate of the economy : xi = ŷi − ŷ

f
i .

To provide a complete definition of the output gap, we introduce the GDP Yi
which is the value of all final goods and services produced in the economy
between times ti−1 and ti. The GDP annualised growth rate is as:
yi = ((Yi/Yi−1)− 1)/τi.

The growth rate yi is assumed to have a long term equilibrium level ȳ such that
E(yi)→ ȳ as i→ +∞. The variable ŷi is defined as the percentage deviation
between the GDP growth rate yi and its long term equilibrium level ȳ:
ŷi = ((yi/ȳ)− 1).

The economy is subject to some “inefficiencies”: we introduce the potential
GDP Y f

i , which is defined as the GDP produced if there is no inefficiency: these
inefficiencies prevent the actual GDP Yi from reaching the “full employment”
GDP Y f

i .
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Therefore we similarly derive the variables yfi , ȳ
f
i , and ŷ

f
i , which complete the

definition of the output gap xi.

If we assume that the processes {Yi}, {Y
f
i }, and {Ii} are adapted, the

processes {xi} and {πi} are adapted too.

Other economic assumptions are made, including price stickiness, absence of
government, optimizing behaviour of both consumers and firms and
labour-based production function.

The dynamics of the output gap and inflation are determined in the model.
They are referred to as the neo-keynesian demand curve and the neo-keynesian
Phillips curve respectively. Their equations are:

xi = Eixi+1 −
1

σ
(n̂i+1 − Eiπi+1) + ui (3)

πi = βEiπi+1 + kxi. (4)
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DSGE dynamics and reaction function

Reaction Function. We assume that the central bank sets the short term
nominal interest rate using a so-called Taylor rule:

ni+1 = n̄i+1(1 + n̂i+1) = n̄i+1(1 + δxxi + δππi + vi). (5)

Here n̄i+1 is the equilibrium nominal interest rate at time ti: δx and δπ are the
weights of the output gap and inflation in the central bank reaction function.
Randomness is introduced by adding the stochastic term vi.

We note that this formulation of the Taylor rule guarantees that the short term
nominal interest rate process {ni} is previsible: in fact, the interest rate ni+1, is
paid at time ti+1 and set at time ti given the inflation rate πi, the output gap
xi, and a random term vi. All these three variables are Fi-measurable.

We add a third source of randomness zi to improve calibration. This is a white
noise process.
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Calibration strategy - overview

We summarise the steps of the proposed calibration strategy in the Gaussian case
(i.e. if the distribution of the shock processes {ui}, {vi}, and {zi} is Gaussian
with zero mean and variance Var(ui), Var(vi), and Var(zi) respectively):

1. The structural parameters of the DSGE model (β, σ, η, k, δx, δπ) should be
stable over time and are obtained from economic research.

2. The expectations of the output gap and inflation are provided by economic
research but are likely to change over time.

3. The equilibrium short term nominal interest rate n̄i is provided by economic
research and is subject to frequent changes.

4. The variances Var(ui), Var(vi) and Var(zi) are obtained by fitting the
variances of nominal rates and inflation implied by the option markets
(caps/floors).

5. The market price of risk processes {λ̄ui } and {λ̄
v
i} are calculated by fitting the

market prices of nominal and real bonds, using the approximations for the
bond prices and the inflation forwards.
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Calibration - smiles

The DSGE dynamics allow one to derive the variance of the nominal interest
rate and inflation.

Var(πi) = (K2)
2(σ2Var(ui) + Var(vi)) + Var(zi) (6)

Var(ni+1) = (n̄i+1)
2(δTK)2σ2Var(ui) + (n̄i+1)

2(1− δTK)2Var(vi)+ (7)

+(n̄i+1)
2δ2πVar(zi)

Cov(πi, ni+1) = n̄i+1K2(δ
TK)σ2Var(ui) + (n̄i+1K2(δ

TK − 1))Var(vi)+ (8)

+n̄i+1δπVar(zi)

These can be used to calibrate the variances of the random noise to market
implied values.

Nominal rates and inflation caps/floors can be used to estimate normal (i.e.
absolute) volatilities, allowing one to calculate the variances of the three
processes {ui}, {vi} and {vi} accordingly.
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Calibration - nominal term structure

We take the variances of {ui}, {vi} and {vi} as input into some approximated
formulae for the nominal bond prices.

For example, if we assume the three processes are Gaussian, the bond price is
approximately given by

P (ti+1, ti+2) ∼= e
c1+c2Var(ui+1)+c3Var(vi+1)+c4Var(zi+1) (9)

where:
c1 = −τi+2n̄i+2(1 + δ

TAEi+1ξi+2(λi+1) + δ
TAIλi+1)

c2 = −
1

2

(
λui+1
φui+1

)2
+
1

2

(
λui+1
φui+1
− τi+2n̄i+2δ

TKσ

)2

c3 = −
1

2

(
λvi+1
φvi+1

)2
+
1

2

(
λvi+1
φvi+1
+ τi+2n̄i+2(δ

TK − 1)

)2

c4 =
1

2
(τi+2n̄i+2δπ)

2
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We take the nominal bond prices observed in the market in order to calibrate to
the nominal term structure.

We take the expectations for output gap and inflation, and equilibrium interest
rates as an input.

The outputs are the market prices of risk for the processes {ui} and {vi} ,
{
λ̄ui
}

and
{
λ̄vi
}
respectively.

Calibration - inflation term structure

Under normality assumption, a similar formula is found for the real bond.

PR(ti+1, ti+2) ∼= E
P
i

(
eτi+1πi+1−τi+2ni+2+λ̄

v
i+1vi+1−ν

v
i+1(λ̄

v
i+1)+λ̄

u
i+1ui+1−ν

u
i+1(λ̄

v
i+1)
)

(10)

We define the forward inflation index I∗i,i+1 ≡ PR(ti+1, ti+2)/P (ti+1, ti+2).

I∗i,i+1
∼= eb1+b2Var(ui+1)+b3Var(vi+1)+b4Var(zi+1) (11)
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where
b1 = τi+1A2,1Ei+1xi+2 + τi+1A2,2(Ei+1πi+2(λi+1) + λ

v
i+1)

b2 = −
1

2

(
λui+1
φui+1

)2
+
1

2

(
λui+1
φui+1
+ τi+1K2σ

)2

b3 = −
1

2

(
λvi+1
φvi+1

)2
+
1

2

(
λvi+1
φvi+1
− τi+1K2

)2

b4 =
1

2
(τi+1)

2.

Again the idea is to get the market prices of risk given the real term structure
and the expectations.
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Implementation and results

We implement the model in order to test its calibration to the market data of 13
January 2010: we took a snapshot of the EUR rates, EUR cap/floors volatilites,
the HICPxT inflation ZCIISs, and HICPxT caps/floors volatilities. The model
was calibrated with a monthly time step for the next 20 years.

DSGE parameters – We use standard choices for the DSGE structural
parameters: since the ECB major concern is currently to stimulate growth and
inflation seems to be subdued, our choice was for a δx much higher than δπ.

Parameter Description Indicative Level
σ Consumption elasticity 1.05
k Market flexibility 0.015

% (monthly) Subjective discount rate 0.03
ω (monthly) Price stickiness 0.9175

δπ Reaction to inflation 1
δx Reaction to output gap 2.5
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Expectactions and equilibrium rate – We have used input inflation
expectations and equilibrium rates derived from market implied data, in such a
way that the difference between implied and the expected is never greater than
40 basis points (1 bp = 1/10000).

Volatilities – We assume that shocks are normally distributed: therefore the
distribution of the short rate and inflation is still Gaussian. This is a distinct
advantage, because the normal distribution for the rates level is very often used
by market practitioners to model market skews.

At each time step, we calibrate the volatilities of ui, vi and zi in order to match
the market implied forward volatilities of the Libor and inflation rate.

Once the market implied forward variances Var(ni) and Var(πi) have been
calculated a numerical minimisation algorithm is used to find the implied
Var(ui), Var(vi) and Var(zi) by using the variance formulas (7) and (6).

There are two linear equations in three unknowns, therefore allowing for an
infinite number of solutions: this is not a major concern as the numerical
minimisation is straightforward and gives consistent curves for the variances
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Var(ui), Var(vi) and Var(zi).

Overall we think that obtaining linear closed forms for the variances is a useful
achievement that makes this model tractable.

Market prices of risk – Once the variances Var(ui), Var(vi) and Var(zi) are
calibrated, we calibrate to the nominal term structure and to the inflation swap
curve by searching for the market prices of risk λui and λ

v
i . Their shapes are

smooth, showing that the numerical minimisation problem yields sensible results.
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Final comments

The model shows high analytical tractability.

The model avoids the need for the exogenous specification of the real rate.

Approximate closed forms are available in the Gaussian case. This makes the
calibration smooth.

The model aims at a realistic mathematical description of the economy.

The co-movement of nominal interest rates and inflation is explicitly derived
from the central bank reaction function:

Cov(πi, ni+1) = n̄i+1K2(δ
TK)σ2Var(ui) + (n̄i+1K2(δ

TK − 1))Var(vi)+ (12)

+n̄i+1δπVar(zi).

Our view is that, in the future, the modelling of interest rates derivatives will
benefit from using macroeconomic relationships to explain the dynamics of the
price levels and central bank policy.
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