Dual Pricing of Swing Options with Bang-Bang Control

June 22nd – 26th, 2010 6th Bachelier Finance Society World Congress

by Yusuke Tashiro

Graduate school of Information Science and Technology The University of Tokyo

Table of Contents

- 1. Introduction
- 2. Settings
- 3. Main result
- 4. Numerical example
- 5. Conclusion

Swing Options

- A kind of American-type derivative
- Traded in energy markets, such as gas and electricity
- Characteristics
 - Multiple rights
 - The availability of volume change
 - Option buyer and seller agree to trade energy in the future
- Difficult to price swing options analytically
 - Constraints for changing volume
 - Pricing swing options numerically

Previous Works

- Numerical methods for pricing American derivatives
 - lower bounds for the price
 - Least-squares Monte Carlo method (Longstaff and Schwartz (01))
 - Extension of LSM to swing options (Dörr (03), Barrera-Esteve et al. (06))
 - upper bounds for the price
 - Dual approach

(Rogers (02), Haugh and Kogan (04), Bender (08), etc.)

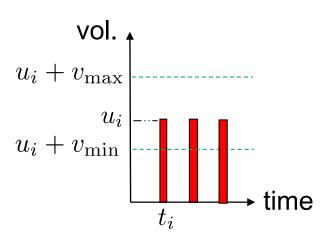
- Applying the dual approach in the previous works to swing options is difficult
 - Swing options have flexibility relating to volume

My Contribution

- Extend a dual approach for pricing swing options with bang-bang control
 - Show monotonicity of the optimal exercise strategy
 - Introduce a second-order difference of the price
 - Decompose the pricing problem into single optimal stopping problems
 - Obtain an upper bound

Setup: Swing Options

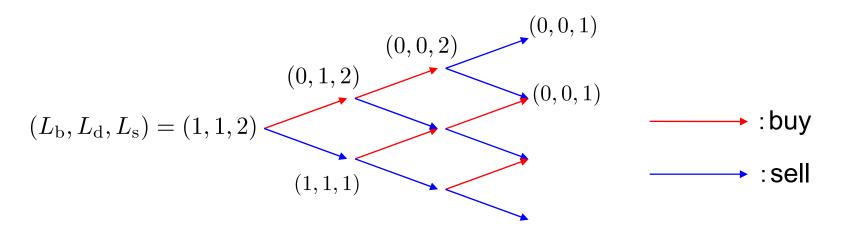
- Underlying asset price process: $\{X_t\}$
- Possible exercise dates: t_i (i = 0, 1, ..., T)
- Number of rights: $L (\leq T+1)$
- All rights must be exercised by t_T
- Bang-bang control
 - When a holder exercises a right, he changes traded volume from u_i to $\begin{bmatrix} u_i + v_{\max} & (v_{\min} \le 0 \le v_{\max}) \\ u_i + v_{\min} \end{bmatrix}$



- Numbers of choosing $u_i + v_{max}$ and $u_i + v_{min}$ are not less than L_b and L_s (buying) (selling)

Setup: Swing Options (cont'd)

- Constraints can be replaced by rights $(L_{\rm b}, L_{\rm d}, L_{\rm s})$
 - $L_{\rm b}$: Number of obligations to buy
 - $L_{\rm d}$: Number of straddles
 - $L_{\rm s}$: Number of obligations to sell
- Transition tree for the number of rights



Formulation of Pricing

- Payoff $Z^{b}(i) = v_{\max}(X_{t_i} K)$ (*K*:strike price) $Z^{s}(i) = v_{\min}(X_{t_i} - K)$
- Price of a swing option with $(L_{\rm b}, L_{\rm d}, L_{\rm s})$ at t_i

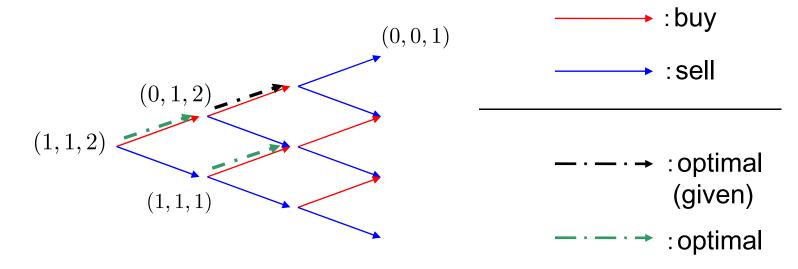
$$V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) = \max \left[E_i [V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i+1)], \\Z^{\rm b}(i) + E_i [V(L_{\rm b} - 1, L_{\rm d}, L_{\rm s}, i+1)], \\Z^{\rm s}(i) + E_i [V(L_{\rm b}, L_{\rm d}, L_{\rm s} - 1, i+1)] \right]$$

• Optimal strategy on $(L_{\rm b}, L_{\rm d}, L_{\rm s})$

 $\xi(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) = \begin{cases} \text{"Non-exercise"} & (V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) = E_i[V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i+1)]) \\ \text{"buy"} & (V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) = Z^{\rm b}(i) + E_i[V(L_{\rm b} - 1, L_{\rm d}, L_{\rm s}, i+1)]) \\ \text{"sell"} & (V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) = Z^{\rm s}(i) + E_i[V(L_{\rm b}, L_{\rm d}, L_{\rm s} - 1, i+1)]) \end{cases}$

Monotonicity for Swing Options

- Optimal strategies between different rights hold monotonicity
- Example on a transition tree



- If $\xi(L_{\rm b}, L_{\rm d}, L_{\rm s} 1, i) =$ "buy", then $\xi(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) =$ "buy"
- If $\xi(L_{\rm b}, L_{\rm d}, L_{\rm s}, i)$ = "buy", then $\xi(L_{\rm b} + 1, L_{\rm d}, L_{\rm s} 1, i)$ = "buy"

Dual Approach

- Proposed by Rogers (02) and Haugh and Kogan (04)
- American options price V(0) satisfies

$$\begin{split} V(0) &= \sup_{0 \leq \tau \leq T} \mathbf{E}[Z(\tau)] \\ &\leq \mathbf{E}[\max_{i=0,\cdots,T} (Z(i) - M(i))] \qquad \text{($Z(i): payoff$)$} \end{split}$$

for any martingale M(i) (M(0) = 0)

- Equality holds for the martingale part $M^*(i)$ of the Doob decomposition of V(i)
- An upper bound for the true price can be calculated

Difficulty in Extension for Swing Option

- Multiple rights
 - Natural approach: decomposition into options with a single decision
 - For multiple American options, some studies evaluate a difference for the number of rights

 $\Delta V(L,0) = V(L,0) - V(L-1,0)$ L : number of rights

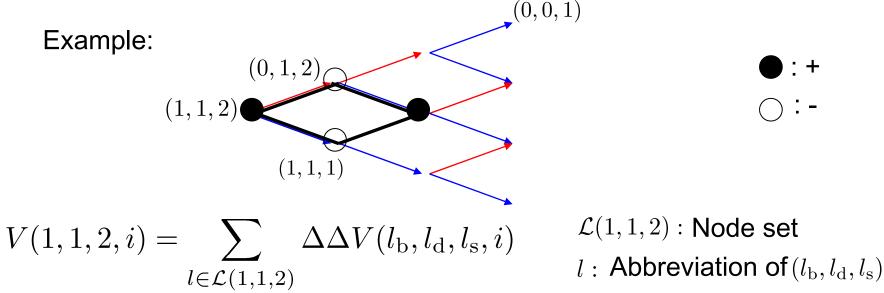
• Possibility of choice to buy or sell

- $\Delta V(L,0)$ does not reflect the choice \longrightarrow unnatural

How do we decompose?

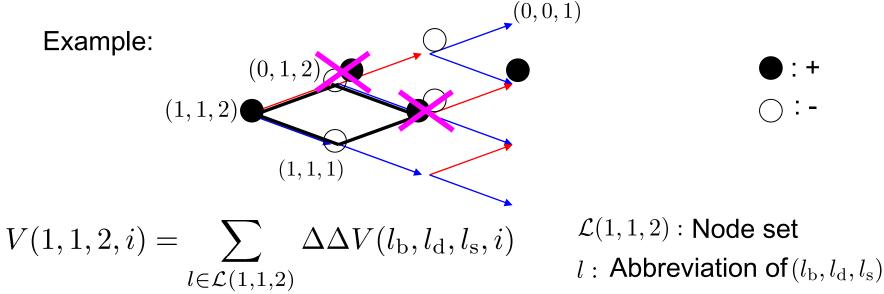
Introducing Second-Order Difference

- Second-order difference for the number of rights $\Delta\Delta V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) \equiv V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) - V(L_{\rm b} - 1, L_{\rm d}, L_{\rm s}, i)$ $-V(L_{\rm b}, L_{\rm d}, L_{\rm s} - 1, i) + V(L_{\rm b} - 1, L_{\rm d}, L_{\rm s} - 1, i)$
- Price of the swing option can be decomposed into $\Delta\Delta V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i)$



Introducing Second-Order Difference

- Second-order difference for the number of rights $\Delta\Delta V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) \equiv V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i) - V(L_{\rm b} - 1, L_{\rm d}, L_{\rm s}, i)$ $-V(L_{\rm b}, L_{\rm d}, L_{\rm s} - 1, i) + V(L_{\rm b} - 1, L_{\rm d}, L_{\rm s} - 1, i)$
- Price of the swing option can be decomposed into $\Delta\Delta V(L_{\rm b}, L_{\rm d}, L_{\rm s}, i)$



Main Result

• Consider optimal stopping problems that correspond to second-order differences $\Delta\Delta V(l_{\rm b}, l_{\rm d}, l_{\rm s}, i)$

Theorem:

If an exercise strategy ξ is monotone and a good estimator of the optimal strategy, then it holds that

$$V(L_{\rm b}, L_{\rm d}, L_{\rm s}, 0) = \sum_{l \in \mathcal{L}(L_{\rm b}, L_{\rm d}, L_{\rm s})} \Delta \Delta V(l_{\rm b}, l_{\rm d}, l_{\rm s}, 0)$$
$$\leq \sum_{l \in \mathcal{L}(L_{\rm b}, L_{\rm d}, L_{\rm s})} \sup_{0 \leq \tau \leq T} E[Z_l^{\xi}(\tau)]$$

 $Z_l^{\xi}(i)$: adjusted payoff (discuss later)

• Equality holds for the optimal exercise strategy ξ^*

Main Result (cont'd)

Theorem: For any martingale $M_l(i)$, it holds that $V(L_b, L_d, L_s, 0) = \sum_{l \in \mathcal{L}(L_b, L_d, L_s)} \sup_{0 \le \tau \le T} E[Z_l^{\xi^*}(\tau)]$ $\leq \sum_{l \in \mathcal{L}(L_b, L_d, L_s)} E\left[\max_{i=0,...,T}[Z_l^{\xi^*}(i) - M_l(i)]\right]$

• Equality holds for the martingale part $M_l^*(i)$ of the Doob decomposition of $\Delta\Delta V(\hat{l}_{\rm b}^{\xi^*}(i), \hat{l}_{\rm d}^{\xi^*}(i), \hat{l}_{\rm s}^{\xi^*}(i), i)$ $\hat{l}_{\rm b}^{\xi}(i), \hat{l}_{\rm d}^{\xi}(i), \hat{l}_{\rm s}^{\xi}(i)$: number of residual rights determined by ξ

Concept of $Z_l^{\xi}(i)$

- For example, consider Z at t_0
- Depend on the number of exercised terms in the second-order difference by ξ

Case1. not more than one term

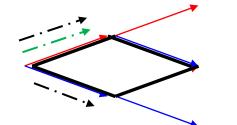
 $Z_l^{\xi}(0) = \max$ [payoff from buying, payoff from selling]

Case2. two terms

$$Z_l^{\xi}(0) = 0$$

Case3. not less than three terms

$$Z_l^{\xi}(0) = -\infty$$



- $-\cdot \cdot \rightarrow$: strategy ξ
- ---- : available strategy

Concept of $Z_l^{\xi}(i)$

- For example, consider Z at t_0
- Depend on the number of exercised terms in the second-order difference by ξ

Case1. not more than one term

 $Z_l^{\xi}(0) = \max$ [payoff from buying, payoff from selling]

Case2. two terms

$$Z_l^{\xi}(0) = 0$$

Case3. not less than three terms

$$Z_l^{\xi}(0) = -\infty$$

Concept of $Z_l^{\xi}(i)$

- For example, consider Z at t_0
- Depend on the number of exercised terms in the second-order difference by ξ

Case1. not more than one term

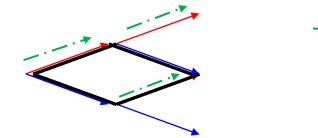
 $Z_l^{\xi}(0) = \max$ [payoff from buying, payoff from selling]

Case2. two terms

$$Z_l^{\xi}(0)\,=\,0$$

Case3. not less than three terms

$$Z_l^{\xi}(0) = -\infty$$



 $-\cdot - \cdot \rightarrow$: strategy ξ

Numerical Example

• Asset price process: mean-reverting process

$$dX_t = -3 \cdot (X_t - 40)dt + 0.5dW_t, \ X_{t_0} = 40$$

•
$$\left\{ \begin{array}{l} \text{Strike price } K = 40 \\ \text{Maturity } T = 20 \text{ and } 100 \\ (L_{\mathrm{b}}, L_{\mathrm{d}}, L_{\mathrm{s}}) \colon (2, 2, 2), \ (6, 6, 6) \text{ and } (10, 10, 10) \end{array} \right.$$

Prop.

For a mean-reverting process, the optimal exercise boundary is determined

Numerical Example: Algorithm

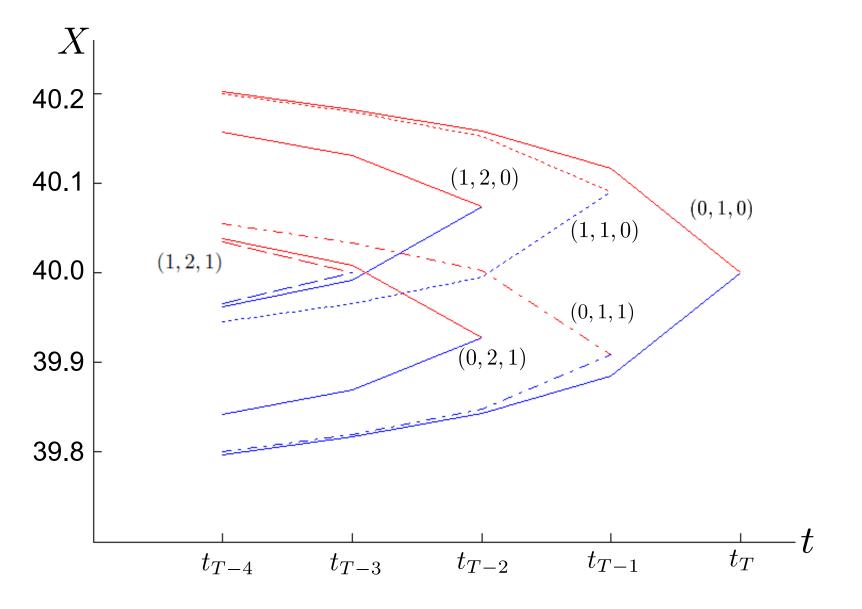
 Based on Andersen and Broadie (04) and Bender (08)

Step 1. The least-squares Monte Carlo regression

Step 2. Estimating optimal exercise boundary – using coefficients obtained from Step.1

Step 3. Estimating martingales in the theorem – from estimated exercise boundary

Numerical Result: Exercise Boundary



18/20

Numerical Result: Price

Rights	T = 20		T = 100	
	lower	upper	lower	upper
(2,2,2)	0.8985	0.9007	1.9408	1.9426
	(0.0011)	(0.0006)	(0.0013)	(0.0015)
(6, 6, 6)	2.0638	2.0692	5.2251	5.2421
	(0.0024)	(0.0015)	(0.0033)	(0.0094)
(10, 10, 10)	_	_	7.9007	7.9364
	-	-	(0.0048)	(0.0079)

(Standard errors are in parentheses)

• Differences between upper and lower bounds are less than 1% of the price in all cases

Summary and Future Works

- For the swing option with bang-bang control,
 - the optimal strategy is monotone
 - the sum of optimal stopping problems corresponding to second-order differences gives an upper bound of the price
- Future works: extension for more complicated options
 - For constant daily and annual constraints, I will be able to extend in a similar way
 - For more general constraints, the dual problem for volume will give an upper bound