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The Setting

Given an o-minimal structure

M = (M, (c)c∈C , (f )f ∈F , (R)R∈R, <)

we have:

the category Def of definable spaces with continuous
definable maps.

the geometry of Def is called o-minimal geometry.

Examples (Special Cases of O-minimal Geometry)

M = (R, 0, 1,+, ·, <) - semi-algebraic geometry (includes real
algebraic geometry);

M = (R, 0, 1,+, ·, (f )f ∈an, <) - globally sub-analytic
geometry;
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General motivation of our work

Develop sheaf theory in the category Def:

Inspired by:

Verdier (locally compact topological spaces);

Grothendieck (étale framework);

Delfs (real algebraic geometry).

Kashiwara-Schapira + L. Prelli (sub-analytic geometry);
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What is an o-minimal sheaf?

Let X be an object of Def and k a field. An o-minimal sheaf of
k-vector spaces on X a contravariant functor:

F : Op(Xdef)→ Mod(k)

U 7→ Γ(U; F )

(V ⊂ U) 7→ (F (U)→ F (V ))

s 7→ s|V

where Xdef is the o-minimal site on X . Satisfying the following
gluing conditions: for U ∈ Op(Xdef) and {Uj}j∈J ∈ Cov(U) we
have the exact sequence

0→ F (U)→ Πj∈JF (Uj)→ Πj ,k∈JF (Uj ∩ Uk)
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What is the o-minimal site on X?

Let X be an object of Def. The o-minimal site Xdef on X is the
data consisting of:

The category
Op(Xdef)

of open definable subsets of X with inclusions;

The collection of admissible coverings

Cov(U), U ∈ Op(Xdef)

such that {Uj}j∈J ∈ Cov(U) if {Uj}j∈J covers U and has a
finite sub-cover.
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Replacing the o-minimal site by the o-minimal spectrum

It is convenient to replace the o-minimal site Xdef by the o-minimal
spectrum X̃ of X :

X̃ is the set of ultrafilters of definable subsets of X equipped
with the topology generated by the open subsets of the form
Ũ where U ∈ Op(Xdef).

This tilde operation determines a functor

Def → D̃ef.

Example

If R is a r.c.f and X an affine real algebraic variety over R with
coordinate ring R[X ], then X̃ ' SpecrR[X ].
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Properties of the o-minimal spectrum

Proposition (Pillay)

The o-minimal spectrum X̃ of a definable space X is T0,
quasi-compact and a spectral topological spaces, i.e:

it has a basis of open quasi-compact subsets closed under
finite intersections.

each irreducible closed subset is the closure of a unique point.
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Canonical isomorphism

The tilde functor Def −→ D̃ef determines morphisms of sites

νX : X̃ −→ Xdef

given by the functor νt
X : Op(Xdef) −→ Op(X̃ ) : U 7→ Ũ.

Theorem (E, Peatfield and Jones)

The functor Def −→ D̃ef induces an isomorphism of categories

Mod(kXdef
) −→ Mod(keX ) : F 7→ F̃ ,

where Mod(keX ) is the category of sheaves of k-modules on the

topological space X̃ .

It is the inverse image ν−1
X and its inverse is the direct image νX∗.
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Canonical isomorphism in derived categories

The canonical isomorphism extends to the derived categories

D∗(kXdef
) −→ D∗(keX ) : I 7→ Ĩ

where D∗(keX ) = D∗(Mod(keX )) and (∗ = b,+,−).

Corollary

The functors

RHomkXdef
(•, •) : D−(kXdef )op ×D+(kXdef ) −→ D+(k),

RHomkXdef
(•, •) : D−(kXdef )op ×D+(kXdef ) −→ D+(kXdef ),

f −1 : D∗(kYdef ) −→ D∗(kXdef ) (∗ = b,+,−),

Rf∗ : D+(kXdef ) −→ D+(kYdef ),

• ⊗L
kXdef

• : D∗(kXdef )×D∗(kXdef ) −→ D∗(kXdef ) (∗ = b,+,−)

commute with the tilde functor.
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Canonical isomorphism and proofs

So we can develop o-minimal sheaf cohomology by setting

H∗(X ; F ) := H∗(X̃ ; F̃ )

where X is a definable space and F is a sheaf in Mod(kXdef
).

Moreover, we can proof properties of our operations on o-minimal
sheaves by going to the tilde world and then came back:

Theorems (E, Peatfield and Jones)

Vanishing Theorem.

Vietoris-Begle Theorem.

Eilenberg-Steenrod Axioms.

Comments about assumptions and proof technique in the tilde
world...
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More proofs

Theorems (E, Peatfield and Jones + E, L. Prelli)

Base Change Theorem:

g−1Rf∗F ' Rf ′∗(g
′−1F ).

Projection Formula:

Rf∗F ⊗kXdef
G ' Rf∗(F ⊗kXdef

f −1G ).

Universal Coefficients Formula:

RΓ(X ; m) ' RΓ(X ; k)⊗k m.

Künneth Formula:

RΓ(X × Y ; l ⊗kXdef
m) ' RΓ(X ; l)⊗k RΓ(Y ; m).
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Families of definably normal supports

Suppose that X is an object of Def which is definably normal and
definably locally compact. Then the collection c of definably
compact subsets of X is a family of definably normal supports, i.e:

every closed definable subset of a member of c is in c ;

c is closed under finite unions;

each element of c is definably normal;

each element of c has a closed definable neighborhood which
is in c .

(These assumptions will be assumed below.)
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c-soft sheaves

We say that F ∈ Mod(kXdef
) is c-soft if the restriction

Γ(X ; F )→ Γ(S ; F|S)

is surjective for every S ∈ c.

Theorem (E, L. Prelli)

The full additive subcategory of Mod(kXdef
) of c-soft k-sheaves is:

Γc(X ; •)-injective;

stable under filtrant inductive limits;

stable under • ⊗kXdef
F for every F ∈ Mod(kXdef

).

Note: X has cohomological c-dimension bounded by dim X , i.e.,
Hq

c (X ; F ) = 0 for all q > dim X .
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Sheaves of linear forms

For F ∈ Mod(kXdef
) we define a presheaf F ∨ by

Γ(U; F ∨) = Γc(U; F )∨.

If G ∈ Mod(kXdef
) is c-soft then:

G ∨ ∈ Mod(kXdef
);

Hom(F ; G ∨) ' Γc(X ; F ⊗kXdef
G )∨;

G ∨ is injective in Mod(kXdef
).
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Verdier Duality

Passing to the derived category we obtain:

Theorem (E, L. Prelli)

There exists D∗ in D+(kXdef
) and a natural isomorphism

RHomkXdef
(F∗,D∗) ' RHomk(RΓc(X ,F∗), k)

as F∗ varies through D+(kXdef
).
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Poincaré and Alexander duality

The cohomological k-sheaves H−pD∗ are the sheafifications of the
presheaves

U 7→ Hp
c (U; kX )∨.

For p = cohomological c-dimension of X these are k-sheaves.
Hence:

Theorems (E, L. Prelli)

Let X be definable manifold of dimension n.

If X has an orientation k-sheaf OrX , then

Hp(X ;OrX ) ' Hn−p
c (X ; k)∨.

If X is k-orientable and Z is a closed definable subset, then

Hp
Z (X ; kX ) ' Hn−p

c (Z ; k)∨.
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What is an orientation k-sheaf?

Let X be a definable manifold of dimension n. We say that X has
an orientation k-sheaf if for every U ∈ Op(Xdef) there exists
{Uj}j∈J ∈ Cov(U) such that for each j we have

Hp
c (Uj ; kX ) =


k if p = n

0 if p 6= n.

If X has an orientation k-sheaf, we call the k-sheaf OrX on X
with sections

Γ(U;OrX ) = Hn
c (U; kX )∨

the orientation k-sheaf on X . If OrX ' kX , then we say that X is
k-orientable.
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When do orientation k-sheaves exist?

Suppose that

M = (M, 0,+, <, (c)c∈C , (f )f ∈F , (R)R∈R)

is an o-minimal expansion of an ordered group. Then every
definable manifold has an orientation k-sheaf.
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homology?
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Yes there is compatibility

Suppose that M is an o-minimal expansion of a real closed field
and X is a Hausdorff definable manifold of dimension n.

Theorem

If L ⊆ K ⊆ X are closed definable sets with K − L closed in X − L,
then there is an isomorphism

Hq
c (K \ L; k) −→ Hn−q(X \ L,X \ K ; k)

for all q ∈ Z which is natural with respect to inclusions.

Corollary

Hence, X is k-orientable with respect to homology if and only if X
is k-orientable with respect to cohomology.
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What is the main application?

We assume that M = (M, <, . . . ) is a sufficiently saturated
o-minimal structure with definable Skolem functions.

Theorem (E and Terzo)

Let G be a Z/qZ-orientable, definably connected, definably
compact, definable group, where q is some sufficiently large prime
number. Then there exists a smallest type definable normal
subgroup G 00 of G of bounded index such that G/G 00 with the
logic topology is a connected, compact, Lie group. Moreover, the
following hold:

1 If G is abelian then G 00 is divisible and torsion free;

2 dimG = dimG/G 00.
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What is this main application?

Without the orientability assumption, this is:

Pillay’s conjecture for definably compact groups;

A non-standard version of Hilbert’s 5o problem for locally
compact groups.

Previously known cases:

Field case: [Hrushovski, Peterzil and Pillay].

Semi-bounded case: [Peterzil].

Linear case: [Eleftheriou and Starchenko].
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How is duality used in this application?

Model theoretic work by Hrushovski, Peterzil and Pillay as well as
some observations by E and Terzo reduce the conjecture to
proving:
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compact, definable abelian group, where q is some sufficiently large
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Work in progress

With L. Prelli we are working on developing the formalism of the
six operations on o-minimal sheaves in Def:

Rf∗, f −1, ⊗L, RHom, Rf!!, f !!
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