Groupoidification: A Categorification of Hecke Algebras

Alexander Hoffnung

University of California, Riverside Joint work with John Baez

Email: alex@math.ucr.edu

Web: http://math.ucr.edu/~alex

Introduction

Groupoidification is a form of categorification:

Categorification:

 \circ Sets \rightarrow Categories \circ Functions \rightarrow Functors

Groupoidification:

 \circ Vector spaces \rightarrow Groupoids \circ Spans of vector spaces \rightarrow Linear maps

Example: Groupoidified Hecke algebra

Spans of finite sets

Spans of groupoids

S

The Hecke Bicategory

For every finite group G there is a bicategory Hecke(G) enriched over the monoidal bicategory $Span(Groupoid_{Fib})$ consisting of:

 \circ objects: finite *G*-sets

• morphisms: spans of G-sets (categorified generators)

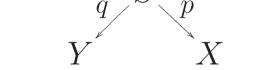
• 2-morphisms: (equivalence classes of) maps of spans (*categorified relations*)

This bicategory categorifies the category Perm(G) consisting of:

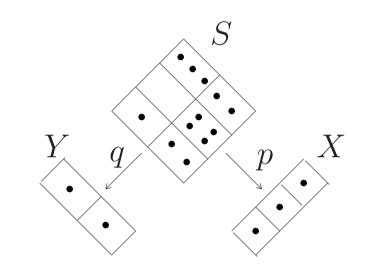
 \circ objects: permutation representations of G, i.e., representations arising from actions of G on finite sets via 'free vector space' functor.

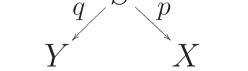
• morphisms: intertwining operators, i.e., G-equivariant linear operators.

The Hecke algebra

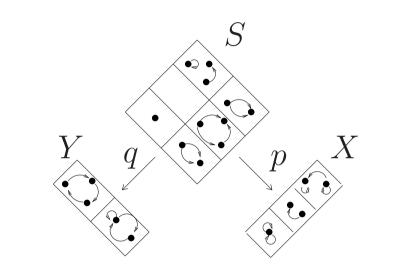


give matrices of natural numbers.





give matrices of non-negative real numbers.

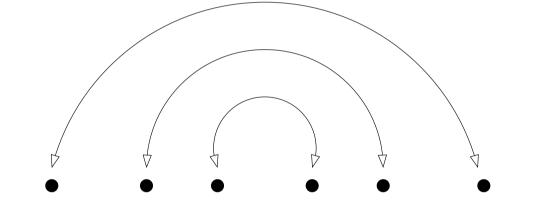


For finite sets, the concept of cardinality is well-known.

What is the cardinality of a groupoid?

The concept of "categorified division" arises from thinking of group actions on sets. For example, we can ask:

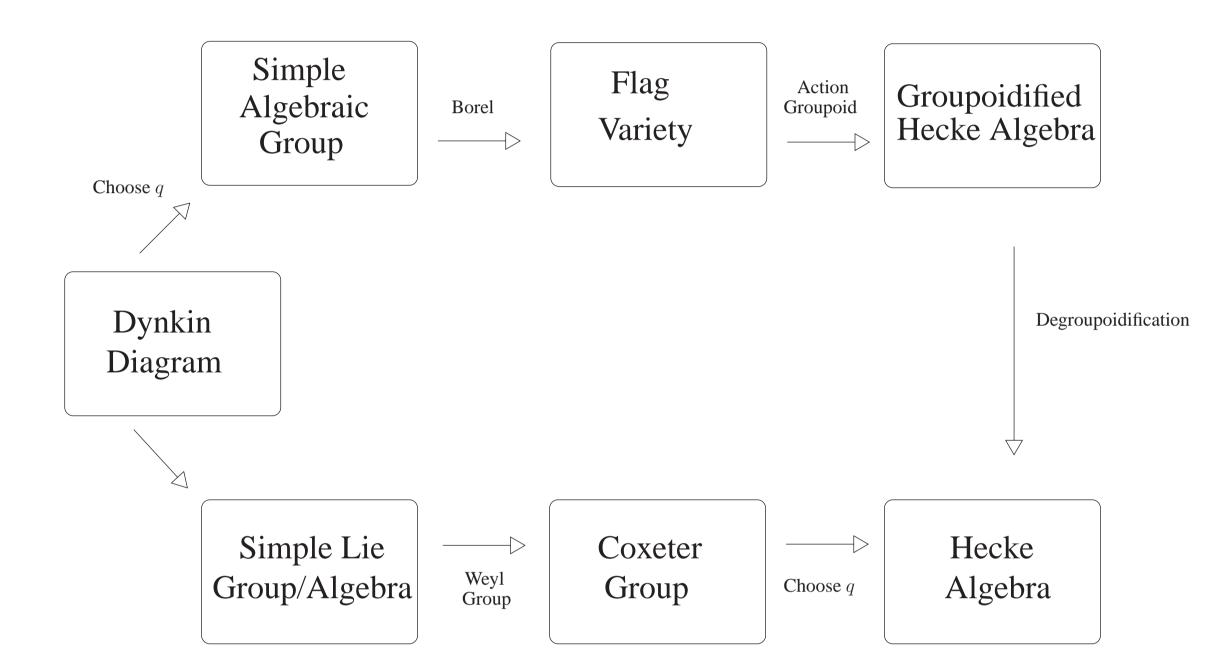
Why is 6/2 = 3?



 $\mathbb{Z}/2$ acting on 6-element set

- Hecke algebras are q-deformed versions of the group algebras of symmetric groups. These naturally sit inside the category of permutation representations of $GL(n, \mathbb{F}_q)$.
- An algebra is a one-object category enriched over *Vect*. So the categorification of the Hecke algebra should be a one-object bicategory enriched over $Span(Groupoid_{Fib})$.

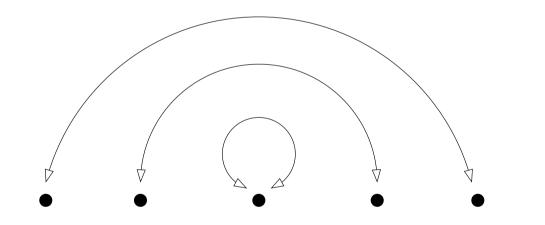
A hands-on view of the groupoidified Hecke algebra



Example: The A_2 Dynkin Diagram

Since we are 'folding the 6-element set in half', we get |S/G| = 3. That is |S/G| = |S|/|G|.

Let's try the same trick starting with a 5-element set:



$\mathbb{Z}/2$ acting on 5-element set We don't obtain a set with $2\frac{1}{2}$ elements! The reason is that the point in the middle gets mapped to itself, i.e., the action is not free.

To get the desired cardinality $2\frac{1}{2}$, we would need a way to count this point as 'folded in half'.

Action groupoid:

Let G be a group acting on a set S,

 $G \times S \to S$

 $(g,s) \mapsto g \cdot s.$

Groupoid cardinality:

$$|X| = \sum_{\text{isomorphism classes of objects } [x]} \frac{1}{|\operatorname{Aut}(x)|}$$

 \circ Fix a power of a prime q. $\circ G = SL(3, \mathbb{F}_q)$ and take B to be the upper triangular matrices. $\circ X = G/B$ is the set of complete flags in \mathbb{F}_q^3 , i.e.,

> $\{V_1 \subset V_2\}$ and dim $V_i = i$.

•

 $\circ A_2$ Dynkin diagram \leftrightarrow Projective plane geometry • Vertices represent "figures" and the edges represent "incidence relations"

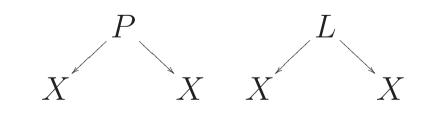
—line point-

 \circ In $\mathbb{F}_q \mathbb{P}^2$, a flag is just a chosen point lying on a chosen line.

The groupoid

 \circ The A_2 Hecke algebra has 2 generators P and L.

• There should be one span of G-sets in our groupoid for each generator - these correspond to 'changing a point' and 'changing a line'.



where

 $P = \{((p, l), (p', l)) \mid p \neq p'\} \text{ and } L = \{((p, l), (p, l')) \mid l \neq l'\}$

• The multiplication in the Hecke algebra satisfies the following relations:

Now,

 $|S/\!/G| = |S|/|G|$

whenever G is a finite group acting on a finite set S.

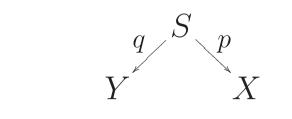
Degroupoidification:

We can think of degroupoidification as a functor from Span(Groupoid) to Vect.

Given a groupoid X, we define the **vector** space associated to X by

Given a 'nice' span:

 $\mathbb{R}^{\underline{X}} = \{\Psi : \underline{X} \to \mathbb{R}\}.$



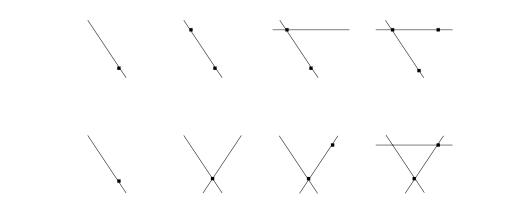
there exists a unique linear operator

 $\tilde{S}: \mathbb{R}^{\underline{X}} \to \mathbb{R}^{\underline{Y}}.$

References

$P^{2} = (q-1)P + q$ $L^{2} = (q-1)L + q$

• We can see this at the groupoidified level by counting. \circ The Hecke algebra also satisfies the Yang-Baxter equation PLP = LPL.



In the projective plane:

• Any two distinct points determine a unique line • Any two distinct lines determine a unique point

John Baez, Alexander Hoffnung, and Christopher Walker, HDA VII: Groupoidification, Earlier version can be found as Groupoidification Made Easy, arXiv:0812.4864.

The action groupoid S//G consists of

 \circ morphisms: pairs $(g, s): s \to g \cdot s$.

 \circ objects: elements of S;

John Baez and Alexander Hoffnung, HDA VIII: The Hecke Bicategory, In progress.

James Dolan and Todd Trimble, Private communication.