Gelfand-Zeitlin Actions on Classical Groups

Mark Colarusso

University of Notre Dame

Introduction

Setting:

- Kostant and Wallach [KW1] construct an integrable system on $\mathfrak{gl}(n,\mathbb{C})$ using Gelfand-Zeitlin theory.
- Corresponding Hamiltonian vector fields are complete and integrate to an action of $\mathbb{C}^{n(n-1)/2}$ on $\mathfrak{gl}(n,\mathbb{C})$. Refer to this action as Gelfand-Zeitlin action.
- Orbits of Gelfand-Zeitlin action of dimension $\frac{n(n-1)}{2}$ form leaves of polarization of open, dense subvariety of a regular adjoint orbit.

Facts:[KW1]

- $J(\mathfrak{g}) \subset \mathbb{C}[\mathfrak{g}]$ is Poisson commutative.
- The restriction of J_{GZ} to a regular adjoint orbit is an integrable system.

Fact: An analogous Gelfand-Zeitlin integrable system exists for complex orthogonal Lie algebras $\mathfrak{so}(n, \mathbb{C})$ (see [Col2]).

Gelfand-Zeitlin Actions

II: Algebraic Integrability of Gelfand-Zeitlin Fields

Decomposition Classes and the A-action

Let $l_i \subset g_i$ be a Levi subalgebra, let \mathfrak{z}_i be the centre of l_i , and let $u_i \in l_i$ be principal nilpotent.

Denote by $\mathfrak{z}_{i,gen} = \{z \in \mathfrak{z}_i : \mathfrak{z}_{\mathfrak{g}_i}(z) = \mathfrak{l}_i\}.$ Definition: The variety

Sections:

- 1. Describe all orbits of dimension $\frac{n(n-1)}{2}$ of the Gelfand-Zeitlin action.
- 2. Algebraically integrate Gelfand-Zeitlin system on covering spaces of decomposition classes.

I: Orbit Structure of Gelfand-Zeitlin Action

Lie-Poisson Structure

Definition:

A smooth variety $(X, \{\cdot, \cdot\})$ is a Poisson variety if $\{\cdot, \cdot\}$ makes the sheaf of functions \mathcal{O}_X on X into a sheaf of Poisson algebras.

If \mathfrak{g} is a reductive finite dimensional Lie algebra, then $\mathfrak{g} \cong \mathfrak{g}^*$ is a Poisson variety with the Lie-Poisson structure.

A function $f \in \mathcal{O}_{\mathfrak{g}}$ defines a Hamiltonian vector field $\xi_f(g) = \{f, g\}$.

Let $\xi_{f_{i,j}}$ be the Hamiltonian vector field of $f_{i,j} \in J_{GZ}$.

Let

 $\mathfrak{a} = span\{\xi_{f_{i,j}} : 1 \le i \le n-1, \ 1 \le j \le i\}.$

Kostant and Wallach prove: **Key Theorem:** [KW1]

The Lie algebra \mathfrak{a} is a commutative Lie algebra of dimension $\frac{n(n-1)}{2}$ and integrates to a global action of $\mathbb{C}^{\frac{n(n-1)}{2}}$ on \mathfrak{g} . This action of $\mathbb{C}^{\frac{n(n-1)}{2}}$ on \mathfrak{g} is sometimes referred to as the Gelfand-Zeitlin action.

Notation:

Following [KW1], we define $A := \mathbb{C}^{\frac{n(n-1)}{2}}$. In [Col2] we prove analogous results for $\mathfrak{so}(n, \mathbb{C})$.

Strongly Regular Elements

Definition: $x \in \mathfrak{g}$ is called *strongly regular* if

$$\dim(A \cdot x) = \frac{n(n-1)}{2}.$$

 $D_i = G_i \cdot (\mathfrak{z}_{i,gen} + u_i) \subset \mathfrak{g}_i$

is called a *regular decomposition class*. Let $D_i \subset \mathfrak{g}_i$ be a regular decomposition class, $1 \leq i \leq n-1$.

Define:

 $X_{\mathcal{D}} :=$

 $\{x : x \text{ is strongly regular}, x_i \in D_i \text{ for all } i\},\$

Fact: $X_{\mathcal{D}}$ is *A*-invariant.

Goal: To realize the action of *A* as the action of an algebraic group on a covering space of $X_{\mathcal{D}}$.

Covering Space

Let $\mathfrak{z}_{\mathcal{D}} := \mathfrak{z}_{1,gen} \oplus \cdots \oplus \mathfrak{z}_{n,gen}$. **Define:** $\hat{\mathfrak{g}}_{\mathcal{D}} \subset X_{\mathcal{D}} \times \mathfrak{z}_{\mathcal{D}}$,

 $\hat{\mathfrak{g}}_{\mathcal{D}} = \{ (x, (z_1, \ldots, z_n)) : x_i \in G_i \cdot (z_i + u_i) \}.$

Have projections

$$\mu: \hat{\mathfrak{g}}_{\mathcal{D}} \to X_{\mathcal{D}}, \, \kappa: \hat{\mathfrak{g}}_{\mathcal{D}} \to \mathfrak{z}_{\mathcal{D}}.$$

Proposition: [CE]

1. $\hat{\mathfrak{g}}_{\mathcal{D}}$ is smooth and $\mu : \hat{\mathfrak{g}}_{\mathcal{D}} \to X_{\mathcal{D}}$ is an étale covering.

Let G be the adjoint group of \mathfrak{g} .

Fact: The symplectic leaves of the Lie-Poisson structure are the adjoint orbits $G \cdot x$.

i.e. $G \cdot x$ is symplectic and its tangent space is spanned by Hamiltonian vector fields.

Gelfand-Zeitlin Algebra

Let $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{C})$ with the Lie-Poisson structure. We use a Poisson analogue of the Gelfand-Zeitlin algebra to construct an integrable system on a regular adjoint orbit in \mathfrak{g} .

Let $\mathfrak{g}_i = \mathfrak{gl}(i, \mathbb{C}), G_i = GL(i, \mathbb{C}).$ \mathfrak{g}_i is a subalgebra of \mathfrak{g} by embedding

 $Y \hookrightarrow \left[\begin{array}{c} Y & 0 \\ 0 & 0 \end{array} \right].$

Similarly, $G_i \hookrightarrow G$. Poisson analogue of Gelfand-Zeitlin subalgebra:

 $J(\mathfrak{g}) = \mathbb{C}[\mathfrak{g}_1]^{G_1} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathbb{C}[\mathfrak{g}]^G.$

If $x \in \mathfrak{g}_{sreg}$, then $A \cdot x \subset G \cdot x$ is Lagrangian.

Goal: Describe all strongly regular *A*-orbits.

Strategy: Study the Kostant-Wallach map $\Phi: \mathfrak{g} \to \mathbb{C}^{\frac{n(n+1)}{2}}$,

 $\Phi(x) = (p_{1,1}(x), \dots, p_{i,j}(x), \dots, p_{n,n}(x)),$

where $p_{i,j}$ is the coefficient of t^{j-1} in the characteristic polynomial of x_i .

Notation: Let $\sigma_i(x_i)$ be the collection of eigenvalues of $x_i \in \mathfrak{g}_i$ counted with multiplicity.

Observe: $\Phi(x) = \Phi(y)$ if and only if $\sigma_i(x_i) = \sigma_i(y_i)$ for all *i*.

Results on A-Orbit Structure

Key Theorem: [Col1]

1. Let $c \in \mathbb{C}^{\frac{n(n+1)}{2}}$ be such that for $x \in \Phi^{-1}(c)$, $|\sigma_i(x_i) \cap \sigma_{i+1}(x_{i+1})| = j_i$ for $1 \leq i \leq n-1$. Then there are $2^{\sum_{i=1}^{n-1} j_i}$ strongly regular *A*-orbits in $\Phi^{-1}(c)$.

2. Let $x \in \Phi^{-1}(c)$ be strongly regular and let Z_i denote the centralizer of the Jor2. Moreover, $\hat{\mathfrak{g}}_{\mathcal{D}}$ is a subvariety of a Poisson variety $\dot{\mathfrak{g}}_{\mathcal{D}}$.

Algebraic Integrability

Let $Z_{D_i} = Z_{L_i}(u_i)$ be the centralizer of u_i in L_i .

Define $Z_{\mathcal{D}} = Z_{D_1} \times \cdots \times Z_{D_{n-1}}$.

Key Theorem: [CE]

- 1. There exists a Lie algebra \hat{a} of Hamiltonian vector fields on $\dot{\mathfrak{g}}_{\mathcal{D}}$ of dimension $\frac{n(n-1)}{2}$, which integrates to a free, algebraic action of $Z_{\mathcal{D}}$ on $\hat{\mathfrak{g}}_{\mathcal{D}}$. The $Z_{\mathcal{D}}$ -action lifts the *A*-action on $X_{\mathcal{D}}$ to $\hat{\mathfrak{g}}_{\mathcal{D}}$.
- 2. The action of $Z_{\mathcal{D}}$ preserves the fibres $\kappa^{-1}(z_1, \ldots, z_n)$. If $j_i = |\sigma_i(z_i) \cap \sigma_{i+1}(z_{i+1})|$, then there are $2^{\sum_{i=1}^{n-1} j_i} Z_{\mathcal{D}}$ -orbits in $\kappa^{-1}(z_1, \ldots, z_n)$.

In the case where each D_i consists of regular semisimple elements, this results generalizes results in [KW2].

References

[BP] Bielawski, Roger and Pidstrygach, Victor, Gelfand-

Gelfand-Zeitlin Integrable System

Notation: For $x \in \mathfrak{g}$, let $x_i \in \mathfrak{g}_i$ be the $i \times i$ upper left-hand corner of x. $\mathbb{C}[\mathfrak{g}_i]^{G_i} = \mathbb{C}[f_{i,1}, \ldots, f_{i,i}]$, where $f_{i,j}(x) = tr(x_i^j)$.

Define: $J_{GZ} \subset J(\mathfrak{g})$,

 $J_{GZ} = \{ f_{i,j} : 1 \le i \le n-1, \ 1 \le j \le i \}.$

Observe:

$$|J_{GZ}| = \sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \frac{\dim(\mathfrak{g}) - \operatorname{rank}(\mathfrak{g})}{2},$$

is half the dimension of regular $G \cdot x$.

dan form of x_i in G_i .

Then $Z_1 \times \cdots \times Z_{n-1}$ acts freely and algebraically on the variety of strongly regular elements $\Phi^{-1}(c)$ and its orbits coincide with the *A*-orbits in (1).

Remark: A similar result was reached by Bielawski and Pidstrygach in [BP]. In [Col2] we prove an analogous result for elements $x \in \mathfrak{so}(n, \mathbb{C})$ where x_i is regular semisimple and $j_i = 0$ for all i. Zeitlin actions and rational maps, *Math. Zeit.*, **260** (2008), 779-803

[Col1] Colarusso, Mark, The orbit structure of the Gelfand-Zeitlin group on n x n matrices, arXiv:0811.1351.

[Col2] Colarusso, Mark, The Gelfand-Zeitlin integrable system and its action on generic elements of $\mathfrak{gl}(n)$ and $\mathfrak{so}(n)$, to appear in *Contemporary Math.*, 2009.

[CE] Colarusso, Mark and Evens, Sam, On algebraic integrability of Gelfand-Zeitlin fields, in preparation.

[KW1] Kostant, Bertram and Wallach, Nolan, Gelfand-Zeitlin theory from the perspective of classical mechanics I, *Studies in Lie Theory*, 319-364, Progr. Math.
243, Birkhäuser Boston, Boston, MA, 2006.

[KW2] Kostant, Bertram and Wallach, Nolan, GelfandZeitlin theory from the perspective of classical mechanics II, *The unity of mathematics*, 387-420, Progr.
Math.244, Birkhäuser Boston, Boston, MA, 2006.

Contact information: Mark Colarusso, 742 S 32nd St. South Bend, IN, 46615 Email: *mcolarus@nd.edu*; Web: *http://www.nd.edu/~mcolarus* Acknowledgments: This first portion of this work was completed under the supervision of Nolan Wallach at UC San Diego. Thanks to Karen Lange for the poster template.