THE GUTZWILLER TRACE FORMULA TORONTO 1/14–1/17, 2008

V. GUILLEMIN

ABSTRACT. We'll sketch below a proof of the Gutzwiller trace formula based on the "symplectic category" ideas of [We] and [Gu-St],. We'll review these ideas in §1 and in §2 give a brief account, based on these ideas, of the theory of oscillatory functions. In §3 we'll discuss a key ingredient in the proof of the Gutzwiller formula, the lemma of stationary phase, and in §4 another key ingredient: a formula for the phase function of a Hamiltonian flow. Finally in §5 we'll show how to prove the Gutzwiller theorem using these results.

1. The category Symp

The objects in this category are symplectic manifolds, pairs (M, ω) where M is an even-dimensional manifold and $\omega \in \Omega^2(M)$ a symplectic form. In these notes we will usually write "M" for " (M, ω) " dropping the ω , however, we will denote by M^- the pair $(M, -\omega)$.

For most of the categories that one encounters in category theory "morphisms" are synonymous with "maps". For the applications of symplectic geometry to semiclassical analysis one needs a much larger class of morphisms. Given symplectic manifolds, M_1 and M_2 , one has to allow the morphisms from M_1 to M_2 to be Lagrangian submanifolds

$$\Gamma \subseteq M_1^- \times M_2$$

a.k.a., canonical relations. This makes composition of morphisms a bit of a problem. Given a pair of canonical relations, $\Gamma_i \subseteq M_i \times M_{i+1}$, i = 1, 2, their relation theoretic composition is defined by

$$(p_1, p_3) \in \Gamma_2 \circ \Gamma_1 \Leftrightarrow (p_i, p_{i+1}) \in \Gamma_i, \quad i = 1, 2, \text{ for some } p_2 \in \Gamma_2$$

just as for compositions of mappings. However for $\Gamma_2 \circ \Gamma_1$ to be a submanifold of $M_1^- \times M_3$ one has to impose transversality (or cleanness) assumptions on Γ_1 and Γ_2 , and hence compositions aren't always well-defined. In other words the symplectic category is not really a category at all but just a "category". (For ways of removing the stigma of these quotation marks see [Ca-Dh-We] or [Wehr-Wo].) We will use double arrow notation

$$\Gamma: M_1 \Rightarrow M_2$$

for these morphisms to distinguish them from maps. (Occasionally, however, a morphism will be a map, i.e., a symplectomorphism.)

Some features of the category, Symp:

- (1) This is a pointed category, the unique point object in this category, "*pt*", being the (unique up to isomorphism) connected zero-dimensional symplectic manifold consisting of a single point.
- (2) The morphisms, $\Lambda : pt \Rightarrow M$ are just the Lagrangian submanifolds of M.
- (3) To every morphism, $\Gamma: M_1 \Rightarrow M_2$, corresponds a transpose morphism,

$$\Gamma^t: M_2 \Rightarrow$$
, where $(p,q) \in \Gamma \Leftrightarrow (q,p) \in \Gamma^t$.

From now on we'll confine ourselves for the most part to symplectic manifolds of the form, $M = T^*X$, i.e., cotangent bundles. This will create some notational problems since

$$T^*(X_1 \times X_2) = T^*X_1 \times T^*X_2 \neq (T^*X_1)^- \times T^*X_2.$$

On the other hand, $T^*X_1 \cong (T^*X_1)^-$ via the symplectomorphism, $(x, \xi) \to (x, -\xi)$, and we'll implicitly, whenever required, make the identification.

We will also, in our cotangent bundle version of *Symp*, restrict ourselves to Lagrangian manifolds and canonical relations which are *exact*. Recall that the symplectic form on T^*X is the exterior derivative of a one-form, $-\alpha_X$, where $\alpha_X = \sum \xi_i dx_i$.

Given a canonical relation,

$$\Gamma \subseteq (T^*X_1)^- \times T^*X_3$$

we'll say that it's exact if

(1.1)
$$\iota_{\Gamma}^{*}(-(pr_{1})^{*}\alpha_{X_{1}}+(pr_{2})^{*}\alpha_{X_{2}})=d\psi$$

for some $\psi \in \mathcal{C}^{\infty}(\Gamma)$, and in what follows we'll restrict ourselves to canonical relations with this property. Moreover, the function, ψ , in (1.1) will play an important role in the applications below, and to emphasize this fact we'll henceforth write canonical relations as pairs, (Γ, ψ) .

Examples

(1) Given $\varphi \in \mathcal{C}^{\infty}(X)$ let

$$\Lambda_{\varphi} = \{ (x,\xi) \in T^*X, \quad \xi = d\varphi_x \}.$$

Then

$$\iota_{\Lambda}^* = d\psi$$

where $\psi(x,\xi) = \varphi(x)$

(2) Let $\pi : Z \to X$ be a fibration and let Γ be the subset of $(T^*Z)^- \times T^*X$ defined by

$$(z, \eta, x, \xi) \in \Gamma \Leftrightarrow \pi(z) = x \text{ and } \eta = (d\pi_z)^* \xi$$
.

Via the identification $(T^*Z)^- \times T^*X \cong T^*Z \times T^*X$ this is just the conormal bundle of the graph π in $Z \times X$ and hence is a morphism

(1.2)
$$\Gamma: T^*Z \Rightarrow T^*X.$$

Now let φ be in $\mathcal{C}^{\infty}(Z)$ and let

(1.3)
$$\Lambda_{\varphi}: pt \Rightarrow T^*Z$$

be the Lagrangian manifold in example 1. Then if (1.3) and (1.2) are composable one gets a canonical relation

$$\Gamma \circ \Lambda_{\varphi} : pt \Rightarrow T^*X$$

i.e., a Lagrangian submanifold, $\Lambda = \Gamma \circ \Lambda_{\varphi}$, of T^*X . It's easy to check (exercise) that

(1.4)
$$\iota_{\Lambda}^* \alpha_X = d\psi$$

where $\psi(x,\xi) = \varphi(z)$ if $(z,\eta,x,\xi) \in \Gamma$.

2. Oscillatory functions

Let $\Lambda_{\varphi} \subseteq T^*X$ be the Lagrangian manifold in example 1. In quantum mechanics one attaches to Λ a "de Broglie function"

$$(2.1) ae^{\frac{i\varphi}{\hbar}}$$

with amplitude $a \in \mathcal{C}^{\infty}(X)$ and phase φ . Thus, as $h \to 0$, the phase part of (2.1) becomes more and more oscillatory and hence, from the macro-perspective, more and more fuzzy and ill-defined.

In semi-classical analysis one replaces these functions by a slightly larger class of functions: functions of the form

(2.2)
$$a(x,h)e^{\frac{i\varphi}{h}}$$

for which the amplitude also depends on h. However, one requires a(x, h) to have an asymptotic expansion in powers of \hbar :

(2.3)
$$a(x,h) \sim \sum_{i=-k_0}^{\infty} a_i(x)h^i$$

for some $k_0 \in \mathbb{N}$.

One can also associate a class of oscillatory functions to Lagrangian manifolds of the type described in example 2 by requiring them to be "superpositions" of functions of type (2.2). More explicitly, suppose that each fiber, $\pi^{-1}(x)$, of the fibration, $\pi: Z \to X$ is equipped with a volume form, μ_x . Then if $a(z,h)e^{\frac{i\varphi(z)}{h}}$ is an oscillatory function on Z of the type above and a(z,h) is compactly supported in fiber directions one can define an oscillatory function, $\pi_* ae^{\frac{i\varphi}{h}}$, on X by defining it pointwise by

(2.4)
$$(\pi_* a e^{\frac{i\varphi}{\hbar}})(x) = \int_{\pi^{-1}(x)} e^{\frac{i\varphi}{\hbar}} a \mu_x \cdot$$

One can prove:

Theorem 2.1. The space of functions (2.4) is intrinsically defined, depending only on the pair, (Λ, ψ) where $\iota_{\Lambda}^* \alpha_X = d\psi$.

In other words it doesn't depend on the choice of (Z, π) and only depends on the choice of φ to the extent that φ and ψ are related by (2.3). For a proof of this result see [Gu-St], Chapter ?. We also show in this chapter that this result allows one to attach a class of oscillatory functions to any Lagrangian pair, (Λ, ψ) . We'll call a function of the form (2.4) an oscillatory function with *micro-support* on Λ and *phase* ψ .

3. The Lemma of Stationary phase

Let (Λ, ψ) be an exact Lagrangian submanifold of T^*X , Y a submanifold of X and μ a volume form on Y. Given an oscillatory function, f(h), on X with micro-support on Λ and phase, ψ , the integral

(3.1)
$$\int_{Y} \iota_Y^* f\mu = I(h)$$

is an oscillatory "constant" and in this section we'll describe how to compute its phase. Let Λ_0 be the conormal bundle of Y in T^*X . Then by a basic property of conormal bundles $\iota_{\Lambda_0}^* \alpha_X = 0$. Suppose now that Λ and Λ_0 intersect cleanly and that their intersection, $W = \Lambda \cap \Lambda_0$ is connected. Then

$$\iota_W^* \alpha = \iota_W^* \iota_{\Lambda_0}^* \alpha = 0 = \iota_W^* \, d\psi \,,$$

so ψ is constant on W, and one has:

Theorem 3.1. (lemma of stationary phase)

The oscillatory constant (3.1) is an expression of the form

$$I(h) = c(h)e^{\frac{i\psi(p_0)}{h}}$$

where p_0 is any point on W and c(h) has an asymptotic expansion

(3.3)
$$\sum_{i=k}^{-\infty} c_i h^i$$

4. CANONICAL RELATIONS GENERATED BY HAMILTONIAN FLOWS

Let (M, ω) be a symplectic manifold and $v = v_H$, $H \in \mathcal{C}^{\infty}(M)$, a Hamiltonian vector field, We'll prove

Theorem 4.1. The set

(4.1)
$$\Lambda = \{ (p, (\exp tv)(p), t, \tau), \quad p \in M, t \in \mathbb{R}, \tau = H(p) \}$$

is a Lagrangian submanifold of $M^- \times M \times (T^*\mathbb{R})^-$.

Proof:

For fixed $t \in \mathbb{R}$, $\Lambda_t = \text{graph } \exp tv_H$ is a Lagrangian submanifold of $M^- \times M$ and hence an isotropic submanifold of $M^- \times M \times (T^*\mathbb{R})^-$. Now note that the tangent space to Λ at $\lambda = (p, q, t, \tau = H(\iota)), q = (\exp tv)(p)$, is spanned by $T_{p,q}\Lambda_t$ and $v_H(q) + \frac{\partial}{\partial t} =: \mathcal{W}(q, t)$ and that

$$\mu(\mathcal{W})(\omega_M - dt \wedge d\tau)_{q,t} = dH_q - (d\tau)_{q,t}$$

and hence is zero when we set $\tau = H$.

Q.E.D.

Suppose now that ω is exact, i.e., $\omega = -d\alpha$ for $\alpha \in \Omega^1(M)$. Then the symplectic form on $M^- \times M \times (T^*\mathbb{R})^-$ is exact and is equal to $-d\tilde{\alpha}$ where

(4.2)
$$\tilde{\alpha} = -(pr_1)^* \alpha + (pr_2)^* \alpha - \tau \, dt \, .$$

Theorem 4.2. Let $\iota_{\Lambda}: M \times \mathbb{R} \to M^- \times M \times (T^*\mathbb{R})^-$ be the map

(4.3)
$$\iota_{\Lambda}(p,t) = (p,(\exp tv)(p),t,\tau)$$

where $\tau = H(p) = H((\exp tv)(p))$. Then

(4.4)
$$\iota_{\Lambda}^* \tilde{\alpha} = d\psi$$

where

(4.5)
$$\psi = \int_0^1 (\exp sv)^* (v) \alpha - tH.$$

Proof:

By (4.2) and (4.3)

(4.6)
$$\iota_{\Lambda}^* \alpha = -\alpha + (\exp tv)^* \alpha + (\exp tv)^* \iota(v) \alpha \, dt - H \, dt$$
$$= \int_0^1 (\exp sv)^* \alpha \, ds + (exptv)^* \iota(v) \alpha \, dt - H \, dt \, .$$

We can rewrite the first term on the right as

- +

$$\int_{0}^{t} (\exp sv)^{*} L_{v} \alpha \, ds$$

$$= \int_{0}^{t} (\exp sv)^{*} d_{M} \iota(v) \alpha \, ds + \int_{0}^{t} (\exp sv)^{*} \iota(v) \, d_{M} \alpha$$

$$= (d_{M \times \mathbb{R}}) \int_{0}^{t} (\exp sv)^{*} \iota(v) \alpha \, ds - \frac{d}{dt} \left(\int_{0}^{t} (\exp sv)^{*} \iota(v) \alpha \, ds \right) \, dt$$

$$- \left(\int_{0}^{t} ds \right) \, dH$$

$$= (d_{M \times \mathbb{R}}) \int_{0}^{t} (\exp sv)^{*} \iota(v) \alpha \, ds - ((\exp tv)^{*} \iota(v) \alpha) \, dt - t \, dH$$

$$= d\psi - (\exp tv)^{*} \iota(v) \alpha \, dt + H \, dt$$

so the last two terms cancel the last two terms in (4.6) leaving us with $\iota_{\Lambda}^* \alpha = d\psi$. Q.E.D.

We conclude with a few remarks about periodic trajectories of v_H . Suppose $\gamma(t) = (\exp tv)(p), -\infty < t < \infty$, is a periodic trajectory of period $T : \gamma(0) = \gamma(T)$. Then the map, $\exp Tv : M \to M$, has a fixed point at p and its derivative

$$(4.7) d(\exp Tv)_p: T_pM \to T_pM$$

maps the subspace, $dH_p = 0$, of T_pM and the vector, v(p), onto itself. Since the subspace of T_pM spanned by v(p) is contained in the subspace, $dH_p = 0$, one gets from (4.7) a linear map, P_{γ} , of the quotient space onto itself.

Definition

The trajectory, γ , is non degenerate if $\det(I - P_{\gamma}) \neq 0$.

5. The Gutzwiller trace formula

Let X be an n-dimensional Riemannian manifold and let

$$(5.1) S_h = -h^2 \Delta_X + V$$

be the Schrödinger operator on X with potential $V \in \mathcal{C}^{\infty}(X)$. As a self-adjoint operator on $L^{2}(X)$, S_{h} generates a one-parameter group of unitary transformations

(5.2)
$$\exp \frac{it}{h} S_n , \quad -\infty < t < \infty .$$

This can be viewed as the *quantization* of the one-parameter group of canonical transformations

(5.3)
$$\exp tv_H : T^*X \to T^*X, \quad -\infty < t < \infty$$

6

where

(5.4)
$$H(x,\xi) = |\xi|^2 + V(x)$$

the connection between (5.2) and (5.3) being given by the following result.

Theorem 5.1. Suppose that for some $\epsilon > 0$ $H^{-1}([-\epsilon, \epsilon])$ is compact. Then for $\rho \in C_0^{\infty}(-\epsilon, \epsilon)$ the Schwartz kernel, $e_{\rho}(x, y, t, h)$, of the operator, $\exp \frac{itS_n}{h}\rho(S_n)$ is an oscillatory function with micro-support on the Lagrangian manifold (4.1) and the phase function (4.5).

A proof of this can be found in [Di-Sj] and (hopefully) in the final version of [Gu-St].

Now suppose that there are only a finite number of periodic trajectories of the vector field, v_H , lying on the energy surface H = 0 and having period 0 < a < T < b. In addition suppose that these trajectories, which we'll denote by γ_i , $i = 1, \ldots, N$, are all non-degenerate. Then one has:

Theorem 5.2. (The Gutzwiller trace formula)

For $f \in \mathcal{C}_0^{\infty}(a, b)$ the trace of the operator

(5.5)
$$\int f(t) \exp \frac{itS_h}{h} \rho(S_h) dt$$

has an asymptotic expansion

(5.6)
$$\sum_{i=1}^{N} c_i(h) e^{\frac{iS\gamma i}{h}}$$

where the c_i 's are asymptotic series in h and

$$(5.7) S_{\gamma_i} = \int_{\gamma_i} \alpha$$

Proof:

By Theorem 5.1 the trace of (5.5) is the integral of $f(t)e_{\rho}(x, y, t)$ over the submanifold

$$Y = \Delta_X \times \mathbb{R}$$

of $X \times X \times \mathbb{R}$. The conormal bundle of Y in $(T^*X)^- \times T^*X \times (T^*\mathbb{R})^-$ is the set of points $(x, \xi, y, \eta, t, \tau)$ with

(5.8)
$$x = y, \quad \xi = \eta, \quad \tau = 0,$$

and the intersection of this set with the set (4.1) is the set of points in $(T^*X)^- \times T^*X \times (T^*\mathbb{R})^-$ satisfying

(5.9)
$$(\exp tv)(x,\xi) = (y,\eta)$$

and

Hence if we apply the lemma of stationary phase to the integral

(5.11)
$$\int_Y f(t)e_\rho(x,x,t)\,dx\,dt\,,$$

dx being the Riemannian volume form on X, we get by (4.4)–(4.5) an asymptotic expansion of the form (5.6)–(5.7).

References

[Ca-Dh-We] A. Cattaneo, B. Dherin and A. Weinstein, "The cotangent microbundle category I", arXiv 0712-1385.

[Di-Sj] M. Dimassi and J. Sjostrand, Spectral Asymptotics in the Semi-classical Limit, London Math. Society Lecture Note Series, 1999.

 $[{\rm Gu-St}]$ V. Guillemin and S. Sternberg, Semi-classical Analysis, a manuscript in progress. 1

[We] A. Weinstein, "Symplectic geometry", Bull. AMS, vol. 5, pp.1–14 (1981).

[Wehr-Wo] K. Wehrheim and C.T. Woodward, "Functionality for Lagrangian correspondences in Floer theory", arXiv 0708.2851 (2007).

DEPARTMENT OF MATHEMATICS, MIT E-mail address: vwg@mit.edu

 $^{^1\}mathrm{These}$ notes can be downloaded from Shlomo's website at the Harvard math department.