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Abstract. We’ll sketch below a proof of the Gutzwiller trace formula based

on the “symplectic category” ideas of [We] and [Gu-St],. We’ll review these

ideas in §1 and in §2 give a brief account, based on these ideas, of the theory

of oscillatory functions. In §3 we’ll discuss a key ingredient in the proof of

the Gutzwiller formula, the lemma of stationary phase, and in §4 another key

ingredient: a formula for the phase function of a Hamiltonian flow. Finally in

§5 we’ll show how to prove the Gutzwiller theorem using these results.

1. The category Symp

The objects in this category are symplectic manifolds, pairs (M,ω) where M is

an even-dimensional manifold and ω ∈ Ω2(M) a symplectic form. In these notes

we will usually write “M” for “(M,ω)” dropping the ω, however, we will denote by

M− the pair (M,−ω).

For most of the categories that one encounters in category theory “morphisms”

are synonymous with “maps”. For the applications of symplectic geometry to semi-

classical analysis one needs a much larger class of morphisms. Given symplectic

manifolds, M1 and M2, one has to allow the morphisms from M1 to M2 to be

Lagrangian submanifolds

Γ ⊆M−

1 ×M2

a.k.a., canonical relations. This makes composition of morphisms a bit of a problem.

Given a pair of canonical relations, Γi ⊆Mi×Mi+1, i = 1, 2, their relation theoretic

composition is defined by

(p1, p3) ∈ Γ2 ◦ Γ1 ⇔ (pi, pi+1) ∈ Γi , i = 1, 2, for some p2 ∈ Γ2

just as for compositions of mappings. However for Γ2 ◦ Γ1 to be a submanifold of

M−

1 ×M3 one has to impose transversality (or cleanness) assumptions on Γ1 and Γ2,

and hence compositions aren’t always well-defined. In other words the symplectic

category is not really a category at all but just a “category”. (For ways of removing

the stigma of these quotation marks see [Ca-Dh-We] or [Wehr-Wo].) We will use

double arrow notation

Γ : M1 ⇒M2
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for these morphisms to distinguish them from maps. (Occasionally, however, a

morphism will be a map, i.e., a symplectomorphism.)

Some features of the category, Symp:

(1) This is a pointed category, the unique point object in this category, “pt”,

being the (unique up to isomorphism) connected zero-dimensional symplec-

tic manifold consisting of a single point.

(2) The morphisms, Λ : pt⇒M are just the Lagrangian submanifolds of M .

(3) To every morphism, Γ : M1 ⇒M2, corresponds a transpose morphism,

Γt : M2 ⇒, where (p, q) ∈ Γ ⇔ (q, p) ∈ Γt .

From now on we’ll confine ourselves for the most part to symplectic manifolds

of the form, M = T ∗X , i.e., cotangent bundles. This will create some notational

problems since

T ∗(X1 ×X2) = T ∗X1 × T ∗X2 6= (T ∗X1)
− × T ∗X2 .

On the other hand, T ∗X1
∼= (T ∗X1)

− via the symplectomorphism, (x, ξ) → (x,−ξ),

and we’ll implicitly, whenever required, make the identification.

We will also, in our cotangent bundle version of Symp, restrict ourselves to

Lagrangian manifolds and canonical relations which are exact. Recall that the

symplectic form on T ∗X is the exterior derivative of a one-form, −αX , where αX =
∑

ξi dxi.

Given a canonical relation,

Γ ⊆ (T ∗X1)
− × T ∗X3

we’ll say that it’s exact if

(1.1) ι∗Γ(−(pr1)
∗αX1 + (pr2)

∗αX2) = dψ

for some ψ ∈ C∞(Γ), and in what follows we’ll restrict ourselves to canonical rela-

tions with this property. Moreover, the function, ψ, in (1.1) will play an important

role in the applications below, and to emphasize this fact we’ll henceforth write

canonical relations as pairs, (Γ, ψ).

Examples

(1) Given ϕ ∈ C∞(X) let

Λϕ = {(x, ξ) ∈ T ∗X , ξ = dϕx} .

Then

ι∗Λ = dψ

where ψ(x, ξ) = ϕ(x)
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(2) Let π : Z → X be a fibration and let Γ be the subset of (T ∗Z)− × T ∗X

defined by

(z, η, x, ξ) ∈ Γ ⇔ π(z) = x and η = (dπz)
∗ξ .

Via the identification (T ∗Z)−×T ∗X ∼= T ∗Z×T ∗X this is just the conormal

bundle of the graph π in Z ×X and hence is a morphism

(1.2) Γ : T ∗Z ⇒ T ∗X .

Now let ϕ be in C∞(Z) and let

(1.3) Λϕ : pt⇒ T ∗Z

be the Lagrangian manifold in example 1. Then if (1.3) and (1.2) are

composable one gets a canonical relation

Γ ◦ Λϕ : pt⇒ T ∗X

i.e., a Lagrangian submanifold, Λ = Γ ◦ Λϕ, of T ∗X . It’s easy to check

(exercise) that

(1.4) ι∗ΛαX = dψ

where ψ(x, ξ) = ϕ(z) if (z, η, x, ξ) ∈ Γ.

2. Oscillatory functions

Let Λϕ ⊆ T ∗X be the Lagrangian manifold in example 1. In quantum mechanics

one attaches to Λ a “de Broglie function”

(2.1) ae
iϕ
h

with amplitude a ∈ C∞(X) and phase ϕ. Thus, as h → 0, the phase part of (2.1)

becomes more and more oscillatory and hence, from the macro-perspective, more

and more fuzzy and ill-defined.

In semi-classical analysis one replaces these functions by a slightly larger class

of functions: functions of the form

(2.2) a(x, h)e
iϕ
h

for which the amplitude also depends on h. However, one requires a(x, h) to have

an asymptotic expansion in powers of ~:

(2.3) a(x, h) ∼

∞
∑

i=−k0

ai(x)h
i

for some k0 ∈ N.

One can also associate a class of oscillatory functions to Lagrangian manifolds

of the type described in example 2 by requiring them to be “superpositions” of

functions of type (2.2). More explicitly, suppose that each fiber, π−1(x), of the
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fibration, π : Z → X is equipped with a volume form, µx. Then if a(z, h)e
iϕ(z)
h is

an oscillatory function on Z of the type above and a(z, h) is compactly supported

in fiber directions one can define an oscillatory function, π∗ae
iϕ
h , on X by defining

it pointwise by

(2.4) (π∗ae
iϕ
h )(x) =

∫

π−1(x)

e
iϕ
h aµx .

One can prove:

Theorem 2.1. The space of functions (2.4) is intrinsically defined, depending only

on the pair, (Λ, ψ) where ι∗ΛαX = dψ.

In other words it doesn’t depend on the choice of (Z, π) and only depends on

the choice of ϕ to the extent that ϕ and ψ are related by (2.3). For a proof of this

result see [Gu-St], Chapter ?. We also show in this chapter that this result allows

one to attach a class of oscillatory functions to any Lagrangian pair, (Λ, ψ). We’ll

call a function of the form (2.4) an oscillatory function with micro-support on Λ

and phase ψ.

3. The lemma of stationary phase

Let (Λ, ψ) be an exact Lagrangian submanifold of T ∗X , Y a submanifold of

X and µ a volume form on Y . Given an oscillatory function, f(h), on X with

micro-support on Λ and phase, ψ, the integral

(3.1)

∫

Y

ι∗Y fµ = I(h)

is an oscillatory “constant” and in this section we’ll describe how to compute its

phase. Let Λ0 be the conormal bundle of Y in T ∗X . Then by a basic property of

conormal bundles ι∗Λ0
αX = 0. Suppose now that Λ and Λ0 intersect cleanly and

that their intersection, W = Λ ∩ Λ0 is connected. Then

ι∗Wα = ι∗W ι∗Λ0
α = 0 = ι∗W dψ ,

so ψ is constant on W , and one has:

Theorem 3.1. (lemma of stationary phase)

The oscillatory constant (3.1) is an expression of the form

(3.2) I(h) = c(h)e
iψ(p0)

h

where p0 is any point on W and c(h) has an asymptotic expansion

(3.3)

−∞
∑

i=k

cih
i .
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For a proof of this result and for some details about how one computes the terms

in the asymptotic series (3.3) we refer again to [Gu-St].

4. Canonical relations generated by Hamiltonian flows

Let (M,ω) be a symplectic manifold and v = vH , H ∈ C∞(M), a Hamiltonian

vector field, We’ll prove

Theorem 4.1. The set

(4.1) Λ = {(p, (exp tv)(p), t, τ), , p ∈ M, t ∈ R, τ = H(p)}

is a Lagrangian submanifold of M− ×M × (T ∗
R)−.

Proof:

For fixed t ∈ R, Λt = graph exp tvH is a Lagrangian submanifold of M− ×M

and hence an isotropic submanifold of M− × M × (T ∗
R)−. Now note that the

tangent space to Λ at λ = (p, q, t, τ = H(ι)), q = (exp tv)(p), is spanned by Tp,qΛt

and vH(q) + ∂
∂t

=: W(q, t) and that

ι(W)(ωM − dt ∧ dτ)q,t = dHq − (dτ)q,t

and hence is zero when we set τ = H .

Q.E.D.

Suppose now that ω is exact, i.e., ω = −dα for α ∈ Ω1(M). Then the symplectic

form on M− ×M × (T ∗
R)− is exact and is equal to −dα̃ where

(4.2) α̃ = −(pr1)
∗α+ (pr2)

∗α− τ dt .

Theorem 4.2. Let ιΛ : M × R →M− ×M × (T ∗
R)− be the map

(4.3) ιΛ(p, t) = (p, (exp tv)(p), t, τ)

where τ = H(p) = H((exp tv)(p)). Then

(4.4) ι∗Λα̃ = dψ

where

(4.5) ψ =

∫ 1

0

(exp sv)∗(v)α − tH .

Proof:

By (4.2) and (4.3)

ι∗Λα = −α+ (exp tv)∗α+ (exp tv)∗ι(v)α dt−H dt(4.6)

=

∫ 1

0

(exp sv)∗αds+ (exptv)∗ι(v)α dt−H dt .
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We can rewrite the first term on the right as

∫ t

0

(exp sv)∗Lvαds

=

∫ t

0

(exp sv)∗ dM ι(v)α ds+

∫ t

0

(exp sv)∗ι(v) dMα

= (dM×R)

∫ t

0

(exp sv)∗ι(v)α ds−
d

dt

(
∫ t

0

(exp sv)∗ι(v)α ds

)

dt

−

(
∫ t

0

ds

)

dH

= (dM×R)

∫ t

0

(exp sv)∗ι(v)α ds− ((exp tv)∗ι(v)α) dt − t dH

= dψ − (exp tv)∗ι(v)α dt+H dt

so the last two terms cancel the last two terms in (4.6) leaving us with ι∗Λα = dψ.

Q.E.D.

We conclude with a few remarks about periodic trajectories of vH . Suppose

γ(t) = (exp tv)(p), −∞ < t <∞, is a periodic trajectory of period T : γ(0) = γ(T ).

Then the map, expTv : M →M , has a fixed point at p and its derivative

(4.7) d(expTv)p : TpM → TpM

maps the subspace, dHp = 0, of TpM and the vector, v(p), onto itself. Since the

subspace of TpM spanned by v(p) is contained in the subspace, dHp = 0, one gets

from (4.7) a linear map, Pγ , of the quotient space onto itself.

Definition

The trajectory, γ, is non degenerate if det(I − Pγ) 6= 0.

5. The Gutzwiller trace formula

Let X be an n-dimensional Riemannian manifold and let

(5.1) Sh = −h2∆X + V

be the Schrödinger operator on X with potential V ∈ C∞(X). As a self-adjoint

operator on L2(X), Sh generates a one-parameter group of unitary transformations

(5.2) exp
it

h
Sn , −∞ < t <∞ .

This can be viewed as the quantization of the one-parameter group of canonical

transformations

(5.3) exp tvH : T ∗X → T ∗X , −∞ < t <∞
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where

(5.4) H(x, ξ) = |ξ|2 + V (x) ,

the connection between (5.2) and (5.3) being given by the following result.

Theorem 5.1. Suppose that for some ε > 0 H−1([−ε, ε]) is compact. Then for

ρ ∈ C∞

0 (−ε, ε) the Schwartz kernel, eρ(x, y, t, h), of the operator, exp itSn
h
ρ(Sn) is

an oscillatory function with micro-support on the Lagrangian manifold (4.1) and

the phase function (4.5).

A proof of this can be found in [Di-Sj] and (hopefully) in the final version of

[Gu-St].

Now suppose that there are only a finite number of periodic trajectories of the

vector field, vH , lying on the energy surfaceH = 0 and having period 0 < a < T < b.

In addition suppose that these trajectories, which we’ll denote by γi, i = 1, . . . , N ,

are all non-degenerate. Then one has:

Theorem 5.2. (The Gutzwiller trace formula)

For f ∈ C∞

0 (a, b) the trace of the operator

(5.5)

∫

f(t) exp
itSh

h
ρ(Sh) dt

has an asymptotic expansion

(5.6)

N
∑

i=1

ci(h)e
iSγi
h

where the ci’s are asymptotic series in h and

(5.7) Sγi =

∫

γi

α .

Proof:

By Theorem 5.1 the trace of (5.5) is the integral of f(t)eρ(x, y, t) over the sub-

manifold

Y = ∆X × R

of X ×X × R. The conormal bundle of Y in (T ∗X)− × T ∗X × (T ∗
R)− is the set

of points (x, ξ, y, η, t, τ) with

(5.8) x = y , ξ = η , τ = 0 ,

and the intersection of this set with the set (4.1) is the set of points in (T ∗X)− ×

T ∗X × (T ∗
R)− satisfying

(5.9) (exp tv)(x, ξ) = (y, η)
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and

(5.10) τ = H(x, ξ) = 0 .

Hence if we apply the lemma of stationary phase to the integral

(5.11)

∫

Y

f(t)eρ(x, x, t) dx dt ,

dx being the Riemannian volume form on X , we get by (4.4)–(4.5) an asymptotic

expansion of the form (5.6)–(5.7).
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