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Abstract

We report on some recent results obtained by Cappiello, Gramchev and
Rodino, concerning semilinear pseudo-differential equations. The linear parts
of such equations are given by the so-called SG-pseudodifferential operators,
introduced by Parenti and Cordes, and then studied further by Coriasco, Schulze
and many others. These operators are defined on the whole Euclidean space,
and a suitable ellipticity condition at infinity (SG-ellipticity) implies for them
the Fredholm property in a scale of weighted Sobolev spaces. In particular one
obtains that bounded eigenfunctions belong to the Schwartz space S(Rn). Here
we prove a more precise result on exponential decay and holomorphic extension,
namely eigenfunctions of linear SG-elliptic equations belong to the Gelfand-
Shilov space of order (1,1). The result extends to semilinear perturbations by a
technique of a priori estimates. Applications concern solitary travelling waves.
In particular, the celebrated KdV equation reduces, for travelling waves, to the
Newton equation, basic example of semilinear SG ordinary differential equation.
Similar examples are provided by higher order travelling wave equations and
stationary solutions of semilinear Schrödinger equations in higher dimension.
Also some non-local models in Fluid Dynamics, suggested by Bona, provide
travelling waves equations, which can be seen as semilinear perturbations of
SG-elliptic pseudo-differential operators.

*Lectures delivered by L. Rodino at the Fields-ISAAC Workshop, December 2006.
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1 Travelling solitary waves

The first documentation of the existence of shallow water waves appeared in 1834
when J. Scott Russell wrote one of the most cited papers about what later be-
came known as soliton theory. Russell observed propagation of a solitary wave in
the Glasgow-Edinburgh canal. In 1895 Korteweg and De Vries derived an equation
describing shallow water waves, and gave the following interpretation of the soli-
tary wave of Scott Russell. Ignoring some relevant physical aspects and simplifying
parameters, we may write for short the KdV equation as

vt + 2vvx + vxxx = 0, (1.1)

where t is the time variable, x the point in the canal, v(x, t) the height of the water
(let us address to [3], [17], [18] for a much more detailed presentation). Looking
for a solitary wave solution, travelling forward with velocity V > 0, we impose
v(t, x) = u(x− V t) in (1.1) and we obtain

d

dx
(−V u + u2 + u′′) = 0

hence u(x) satisfies u′′ − V u + u2 = const. Assuming further const = 0, we are
reduced to solve

u′′ − V u + u2 = 0, (1.2)

sometimes called Newton equation. Equation (1.2) possesses explicit solutions in
terms of special functions. If we impose u(x) → 0 for x → ±∞, we obtain simply
translations of the function

u(x) =
3
2V

Ch2
(√

V
2 x

) , (1.3)

where

Cht =
et + e−t

2
.

We emphasize two properties of u(x) in (1.3): first, it can be extended as analytic
function in a strip of the form {z ∈ C : |=z| < a} in the complex plane. Sec-
ond property is the exponential decay for x → ±∞. After KdV equation, several
related models were proposed. In particular recently, the theory of the solitary
waves had impressive developments, both concerning applicative aspects and math-
ematical analysis. Let us mention applications to internal water waves, nerve pulse
dynamics, ion-acoustic waves in plasma, population dynamics, etc. From the math-
ematical point of view, holomorphic extension and exponential decay in general
situations were studied by Bona and Li [3], Biagioni and Gramchev [4], Gramchev
[12] and others. In this order of ideas, we observe in particular that during the years
1990-2000, several papers were devoted to 5th order and 7th order generalization of
KdV, see [17], Chapter 1. The corresponding equation (1.2) is of the type

N∑
j=0

aju
(j) + Q(u) = 0 (1.4)
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where Q is a polynomial, Q(u) =
∑M

j=2 bju
j and a0 = −V 6= 0. Because of physical

assumptions, the equation
∑N

j=0 ajλ
j = 0 has no purely imaginary roots, and then all

the solutions of the corresponding linear equation have exponential decay/growth.
Non-trivial solutions u of (1.4) with u(x) → 0 for x → ±∞ may exist or not,
according to the coefficients aj , bj , and when they exist, in general they do not
have an explicit analytic expression. Exponential decay and holomorphic extensions
are granted anyhow, by the previous theoretical results, see the next pages. Let
us emphasize that, to reach the exponential decay, the boundedness of u(x) is not
sufficient as initial assumption. We shall express later a precise threshold in terms
of Sobolev estimates; as counter-example, consider here the celebrated Burger’s
equation (1948):

vt + vxx + 2vvx = 0. (1.5)

Imposing v(t, x) = u(x−V t) and arguing as before we obtain the Verhulst equation

u′ − V u + u2 = 0 (1.6)

which can be regarded as particular case of (1.4). It admits the bounded solution

u(x) =
V

1 + e−V x
. (1.7)

Assuming V > 0, we have exponential decay only for x → −∞, whereas u(x) →
V 6= 0 as x → +∞.

2 Semilinear Schrödinger equations

As n-dimensional generalization of (1.2), setting for simplicity V = 1, we may
consider

−∆u + u = up (2.1)

for an integer p ≥ 2. Such equations in Rn have been largely studied. From the
point of view of the Mathematical Physics, they appear for example when consider-
ing nonlinear Schrödinger equations used in Plasma Physics and Nonlinear Optics.
Travelling waves, in this case, have to be understood as stationary wave solutions,
defined as time-modulation of v(x). From the point of view of the Mathematical
Analysis, we address to the recent book [1] for a collection of results of existence
and uniqueness, or multiplicity, of the Sobolev solutions of (2.1) via variational
methods. Concerning exponential decay, we quote the following precise result in
[2]. Assume n ≥ 3. If 1 < p < n+2

n−2 , then (2.1) has a (positive) radial solution
u(x) = U(|x|) ∈ H1(Rn) = W 1,2(Rn). Such a solution is unique and

U(r) ∼ r−
n−1

2 e−r, r = |x| as r → +∞.

We address to the next sections for exponential decay and holomorphic extension of
general solutions of (2.1).
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3 Gelfand-Shilov spaces

A precise functional frame, where we may read the previous properties of travelling
waves, is given by the Gelfand-Shilov classes, subspaces of the Schwartz class S(Rn).
Let us recall their definition. The space Sµ

ν (Rn), µ > 0, ν > 0, µ + ν ≥ 1, is defined
as the space of all functions f ∈ C∞(Rn) satisfying the following estimate

sup
x∈Rn

exp(ε|x|1/ν) |∂α
x f(x)| ≤ C |α|+1(α!)µ (3.1)

for all α ∈ Zn
+ and for some positive constants C, ε independent of α, or equivalently

sup
α,β∈Zn

+

C−|α|−|β|(α!)−µ(β!)−ν sup
x∈Rn

|xβ∂α
x f(x)| < +∞ (3.2)

for a new constant C > 0. These spaces, introduced by Gelfand and Shilov in the
book [11] (see also Mityagin [14], Pilipovic [16]), give simultaneous information on
the regularity and the decay at infinity of their elements. For µ < 1 the estimates
(3.1), (3.2) grant that f can be extended in Cn as an entire function satisfying
uniform decay estimates in conic neighborhoods of the real axis, see [11] for precise
statements. For µ = 1, f is real analytic and admits a holomorphic extension only
in a strip of the form {z ∈ C : |=z| < T}, T > 0. We also recall that the Fourier
transformation F acts as an isomorphism

F : Sµ
ν (Rn) −→ Sν

µ(Rn). (3.3)

By using Fourier transform, the functions f ∈ Sµ
ν (Rn) can be characterized by

imposing simultaneously

|f(x)| ≤ Ce−ε|x|1/ν
, |f̂(ξ)| ≤ Ce−ε|ξ|1/µ

(3.4)

for some C > 0, ε > 0. In the following, our attention will be fixed in the case
µ = 1, ν = 1. In fact, u(x) in (1.3) belongs to S1

1(R), and the same will be shown for
the other travelling waves of the previous sections.

4 SG-elliptic partial differential equations

In order to find a general class of equations and a general result, including the
models in Sections 1, 2, we first discuss the linear part of the operators. Writing
Dxj = −i∂xj and Dα = Dα1

x1
...Dαn

xn
in Rn, we first consider the partial differential

operator with constant coefficients

P =
∑
|α|≤m

cαDα (4.1)

and the corresponding symbol

p(ξ) =
∑
|α|≤m

cαξα.
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We assume for some c > 0

|p(ξ)| ≥ c(1 + |ξ|)m, ξ ∈ Rn. (4.2)

This interpretes the hypothesis for (1.4), which we may read as p(λ) =
∑N

j=0 aj(iλ)j

6= 0 for λ ∈ R, hence |p(λ)| ≥ c(1+|λ|)m. Note also that the symbol of the linear part
in (2.1) is p(ξ) = |ξ|2 + 1, which obviously satisfies (4.2). A further generalization
to linear operators with smooth variable coefficients in Rn is given by the so-called
SG operators (see [9], [10], [15]). Let us limit attention initially to operators with
polynomial coefficients:

P =
∑

|α|≤m1
|β|≤m2

cαβxβDα (4.3)

with symbol
p(x, ξ) =

∑
|α|≤m1
|β|≤m2

cαβxβξα. (4.4)

The natural generalization of (4.2) is the SG-ellipticity condition

|p(x, ξ)| ≥ c(1 + |ξ|)m1(1 + |x|)m2 , |x|+ |ξ| ≥ R, (4.5)

with c > 0, R > 0. This grants a general result of rapid decay for x → ∞ of the
solutions of the corresponding linear equations, see [9], [10], [15] for the proof.

Theorem 4.1. Let u ∈ S ′(Rn) be a solution of Pu = f, with P as in (4.3), satisfying
(4.5) and f ∈ S(Rn). Then u ∈ S(Rn). In particular Pu = 0 implies u ∈ S(Rn).

Looking for exponential decay and holomorphic extensions, we have the following
more precise result, due to [6], [8].

Theorem 4.2. Let u ∈ S ′(Rn) be a solution of Pu = f, with P as in Theorem 4.1
and f ∈ S1

1(Rn). Then u ∈ S1
1(Rn). In particular, Pu = 0 implies u ∈ S1

1(Rn).

Note that in the linear case our initial assumption is u ∈ S ′(Rn), so counter-
examples of type (1.6), (1.7) do not take place. Finally we pass to consider semilinear
equations

Pu = Q(u) + f, (4.6)

with P as in (4.3), (4.5), f ∈ S1
1(Rn) and

Q(u) =
M∑

j=2

bju
j . (4.7)

Theorem 4.3. Consider the equation (4.6). Assume u ∈ Hs(Rn), s > n/2. In the
case m2 = 0, that is P as in (4.1), (4.2), assume further 〈x〉εu ∈ Hs(Rn), s > n/2,
for some ε > 0, where we denote 〈x〉 = (1 + |x|2)1/2. Then u ∈ S1

1(Rn).

The previous Theorem 4.3 applies obviously to the equations of Sections 1 and
2. The proof in the case m2 > 0 was given in [6].
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5 Non-local travelling waves

Non-local equations, i.e. nonlinear partial differential equations involving integral
operators, have been proposed as models for different solitary waves phenomena.
Let us fix here attention on the so-called intermediate long equation, see [13] and
recent contributions by J.L. Bona, J. Albert and others:

vt + 2vvx − (Nv)x + vx = 0, (5.1)

where N is the Fourier multiplier operator defined by

(Nv)̂ (ξ) = ξCtghξv̂(ξ). (5.2)

Looking for solutions v(t, x) = u(x − V t) and arguing as before, we obtain the
non-local equation

Nu + γu = u2 (5.3)

where γ = V − 1. Under the assumption V > 0 a solution is given by

u(x) =
a sin a

Ch(ax) + cos a

where a is determined by the equation actg a = γ. We have Ch(ax)+ cos a > 0 and
u ∈ S1

1(R).

6 SG-elliptic pseudo-differential equations

Theorems 4.2, 4.3 can be extended to a class of pseudo-differential operators P, to
include the model of Section 5 as a particular example. For the sake of simplicity,
we limit ourselves to consider Fourier multipliers:

p(D)u(x) = (2π)−n

∫
Rn

eix·ξp(ξ)û(ξ)dξ, (6.1)

where p(ξ) is a classical analytic symbol of order m > 0:∣∣Dα
ξ p(ξ)

∣∣ ≤ C |α|+1α!(1 + |ξ|)m−|α| (6.2)

The assumption of SG-ellipticity is formally as in (4.2):

|p(ξ)| ≥ c(1 + |ξ|)m, ξ ∈ Rn. (6.3)

The symbol of the linear part of (5.3) is

p(ξ) = ξCtghξ + γ, γ > −1,

and (6.2), (6.3) are satisfied.

Theorem 6.1. Let p(ξ) be SG-elliptic and consider the equation

p(D)u = Q(u) + f

where Q is a polynomial, cf. (4.7), and f ∈ S1
1(Rn). Assume that for some ε > 0 we

have 〈x〉εu ∈ Hs(Rn), s > n/2. Then u ∈ S1
1(Rn).
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