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I shallstartwith the constructionof geometricallyinvariant formulasfor the fundamentalsolution andheatkernel of PDE’sof the

form

(1)

whereX1, ..., Xm axevectorfields on amanifoldM~ of dimensionm,

a) m = m !=~A is elliptic, assumingX1,... , X,,, arelinearly independent,

b) m < n andthe bracketsof theXfs yield all of TM~ * A is subelliptic.

To illustratetheproposedstructure,I shalldiscussafamily of operatorsfor which “explicit” fundamentalsolutionsgiven in geometric

termsareavailable.

We arein 3 dimensions,Cr1, a2,y) = (z, y) with 2 vectorfields,

a+ 2kx2IzI
2~2

By,

x2= ± — 2kx11x1
2k2 B

Ox
2

8y’

andthe differential operatoronewantsto invert is

(2)

The fundamentalsolutionF(x, y;~(o), y(O)) is the distributionsointionof

(3) AF=6(x—x(0))6(y—y(0)).

We notethat

(4) isJ P(x, y; X(O), ~(O))j(~, y)dzdy= f(xC0),~(O)),

sothe fundamentalsolutionis thekernelof the integraloperatorwhich inverts,or solvesA.

We shalllook for F in thefollowing form:

(5) jvdD
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wherethe functiong is asolutionof the Hamilton-Jacobiequation

(6) ~$+ 4(X1u)~ + 4(X292 =

g = g(x, y; ~(O), y(O); r) is given by amodifiedactionintegralof acomplexHarniltonianproblemandthe volumeelementv is thesolution

of atransportequation.Let

(7) liQo, ~)= 4 (sri + 2kx21x1
2k20P + 4 — 2kx

1IxI2k—20)2

denotetheHaniltonian,where~ and0 arethe variablesdualto x andy. The complexbicharacteristicsaresolutionsof the 1-lamiltonian

systemof differentialequations

(8) ±~=H~, 4j=—H~3, j=1,2,
~=H6, 0=-Ky

with the unusualboundaryconditions

0(0) =

zi(O) =4¾x20=m~%

y(r)=y, zi(rfl=xi, z2Qfl=x2.

Also

(9) E —~ = 1.2 1.2
Or 2~1 +

is the energywherethe modifiedactiong is given by

(10) p = —4(0) + J~4(s) i(s) ±0(s)~(s) — H(x(s),y(s),i(s),0(s))]ds.
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The volume elementv is the solutionof the following secondorder transportequation:

A(E\ ‘2(11) —--[Xv + (Ag)v] = 0,m Or

where

(12) + Z(X~o)Xj
2=1

is differentiationalong the bicharacteristic.Now
fEvdr

JI1Y

hasasimple geometricinterpretation.TheoperatorA hasacharacteristicvarietyin T*M~ given by lit = 0. Over everypoint x e M~,

this is a line, parametrizedby 0 e (—co,co),

= ~2kx2IxI
2k20~2 — 2kx

11x1
2k20.

ConsequentlyF maybe thoughtof as the (actionfl1 sumin&1 over the characteristicvariety with measureLv. I notethat, whenA is

elliptic, its characteristicvariety is the zerosection,so we do get simply 1/distance,as expected;when

82 82 522±2±2Ox
1 Ox2 Ox3

onehasthe Newtonpotential

rnce the squareof a dThta~acefunction F= (x,x(O)) — —1/1821

.

= i-p behaves eventhoughit is complex;I recall that action=(distance)
2.
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k = 1: The Hefrenberggroup

Here
O a

Ox1
a a

X2= —2xi—,
Ox2 Dy

(13)

referredto as the“horizontal vector fields”, areleft-invariantwith respectto the I-Ieisenbergtranslation

(x, y) o (a!, 11’) = (x±a!, ~,+ ~ ±2[x2zj — xix~j).

F(x,y;x(
0) ~(O))— F((—x(0),~~(O))a (x,y);0,0).

Therefore

(14)

and

F(z,y;0,0) = J Evdr

iriP

where

p = k12 coth(2r)—4,
E = Op _ 21x12

77 — sinh2(2r)’
1 sinh(2’r

)

V = -~ I4~

We alsohavethe heatkernel:

P = ker(e~) (2irt)2
(16)

V=Ev, f=-i-g.

In particular,one has

(16)

— I Vdr,

OP
— AR = 6(t)6(x).
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f = i-p hasgeometricsignificance.

HeisenbergGeometry

On the Heisenberggroup, everyneighbourhoodof the origin containspointswhich are connectedto the origin by a finite number

of geodesics,morethan one, andalso pointswhich are connectedto the origin by an infinite numberof geodesics.This is true for all

Carnot-Caratheodorygeometries.

1 Theorem. On Iii, there are a finite numberof peodesicsconnecting(z,y) to (0,0) if and only if x ~ 0. Amonp their lenpths,

d3(z,y),j = 1,2,--- the shortestis the so-called “classical action” and we shall denoteit by d~(x,y). Everypoint of the line (O,y) is

connectedto the onpin by an infinite numberof peodesics.

A geodesicis the projectionof a bicharacteristic,i.e. solution of the Hamiltonian systemof differential equations(8) with end

conditions

(17) x(0) = 0, y(0) = 0, xQr) = x, yQr) =

onto thebasemanifold. We set

(18) f = i-p.

f is a complexdistance
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2 Theorem. LetTJ(x,y),j=1,2,-~- denotethe critical pointsof f(z,y, -r) with respectto ‘r, i.e.

frQl3,y,Tj(rr,y)) =0.

f(x,y,-ry(x,y)) = ~dj(x,y)2, j = 1,2,...

This remarkableresulthasimportant consequences.Recall theheatkernel

(2irt)2 4 e7f~~tVdT.

One may obtain the small time asymptoticof P by the stationaryphasemethodwhich picks out the first critical point -i-i (x, y) of f.

Then(20) yields f
7(x,y,-ri(x,y)) = ~d0(x,y)

2.

3 Theorem. (i) Given afixedpoint (x, y) with x ~ 0, one has

dc(x,v)2
— 2t [e(x,y)V~7i±o(t)],

:1
f”Qri)

f”Qr) = 52f/&2.

(ii) At points (0,y),y #0, one has

P(0,y;t) = 1 dc(O,y)2 {426 2t [1

) 1/2

(19)

Then

(20)

(21)

as t —4 0+, where

1
— e

P(x,y;t) (2irt)2

e(x,y) = (

(22)

as t ~

±
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Length and distance

Givenacurve

in M~, its lengthis
I = jf ~/t(sY ±- -. + i~(s)2ds.

Here
a

±(s) = ___

:j=1

is the tangentvector to the curvez(s). Moregenerally,given horizontalvectorfieldsX = (X

1, ... , X,,~) on m<n we introducea

metric by calling X an orthonormalset. Givenacurvex(s), 0 < s < t we write

m

(24) ±(s) =

j=1

andthen

(25) l=Lt v1(s)
2±~.±7m(s)2ds

is its length. The distanceof 2 pointsA andB is the minimumof the lengthsof all connectingcurves. Hereaproblemarises.Consider

the horizontalvectorfields8/Ox and 0/By in R3 — {(x, y,z)}. Then 2 points with different z-componentsdo not have a horizontal

connection,that is acurveall of whosetangentsarelinear combinationof 0/Ox and8/dy; in particular, we cannotassignadistanceto

two suchpoints.

4 Theorem. (W. L. Chow, 1989) Given vectorfieldsX
1,- - - ,Xm, let

(26) Xi,~ - ,Xm, [X~,X1], [X~,Xy],Xk],-.

peneratethe tanpentspaceafter a finite numberof steps. Then 2 points always havea horizontal connection.

In particularwe canassignadistanceto 2 arbitrarypointsandthis yields aCarnot-Garatheodorygeometry. (26) is often referredto

asHbrmander’sbracketgeneratingcondition (1967).
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Missing directions

What is the analogueof the Heisenbergy-axis, the centerof the group, or themissingdirection, for generalCarnotgeometries? We

startwith an example.

Let

(27) 0 20 0Xy+y~j, By

denotetwo vectorfields in JR3

“How manypeodesicsinducedby X andY join two pivenpoints (xo, yo, to) and (x,y, t) 9”

5 Theorem. yo > 0. Everypoint P(x, y,t), y > 0, can be joined to P(0, yo, 0) by at least one local peodesic. The numberof theselocal

peodesicsis finite if and only if

(i) y$ I/o, or

(ii)y=yo and t±y~x#0.

6 Theorem. ye> 0. Wheny = yo and t ±y~x = 0, thenP(x, yo, t) is joined to P(0,yo, 0) by a discreteinfinity of local geodesics.

7 Theorem. I/o = 0. Everypoint PQr,y,t) is connectedto the origin by at least onepeodesic.The numberof peodesicsjoining P(x,y, t)

to the oripin is finite if and only if y # 0. Wheny = 0, everypoint of the “canonical submanfold”{(x, 0,0),z ~ O} is joined to the oripin

by a continuousinfinity of peodesics,while everypoint of the complement{(x, 0, t), t # 0} is joined to the origin by a discreteinfinity of

geodesics.

When y # 0, [1’,XJ = YX — XY = 2y8/Ot yields TJR3. When y = 0 we also need[Y,[Y,XfJ = 20/Ot for TR3. So JR3 breaksup

naturally into the domainsv > 0, y < 0 andtheir boundaryy = 0. A geodesicconnecting2 points in y> 0 is local if it stays in y> 0,

otherwiseit is nonlocal. The line y = yo, t ±y2z— 0 is calledthe canonicalcurveandits tangentspacemayreplacethe missingdirection

not coveredby the horizontalvectorfieldsX andY. Note that the canonicalcurve goesinto the x-axisas Ye —~ 0.

The following statementmaybe correctunderrathergeneralcircumstances.

“Given m vectorfieldson M~ whose bracketsgenerateTM~, for everypoint Po e M~ there is an n — m dimensionalsubmanifold

So, Po e So, characterizedby having all its points connectedto P
0 by an infinite numberof geodesics”.
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The quartic oscillator

The name“quartic oscillator” refersto the following differential operator:

(28)

recall that the harmonicoscillator is

2
(29) dx2+X

Theyarespecialinstancesof aclassof operatorsof the form

(30) ~dQ+a1x2 ±a
2A±~±akz

A great deal is known about the harmonicoscillator, almost nothing aboutoperatorsof the form (30), in particular about the quartic

oscillator; onehasasymptotic information about (28) but until lately no inverseformulas of any kind. (30) is not ahypergeometric

equation,it is calledHeun’s equation.

In 1983 Voroswrote a famous300 pagepaperwith the title: “The quarticoscillator”. lie claimedsomevery interestingresultsbut

theargumentswereunconvincing. Phamandhis coworkersin Nice tried to elucidateVoros’ resultsbut did not get beyondthe harmonic

oscillator. Vorosbasedhiswork on articleswritten by thephysicistsHalian andBloch in the 1960-s,whoextendedheatkernelsto complex

phasefunctions. Also in 1972-73Cohnde Verdiereusedideasfrom thesephysicspapersto obtainresultson closedgeodesicsfor elliptic

operators.I shouldalsomentionthat Kawaiandcoworkersat RIMS in Kyoto havebeenworking on Voros’ ideason the quarticoscillator;

mainly trying to understandtheasymptoticsvia ]3orel summation,Ecalle’sresurgence,WKB method(Wentzel-Kramers-Brillouin),Airy

functions,Kelvin lines, etc.

The mathematicaldescriptionof thequantummechanicalproblemof the doublewell potentialleadsto the differential operator

(31) —~ + (
9—a2)2.

Inverting (28) and(31) areequivalentproblems.Recall the sub-elliptic Laplacianfor the vectorfields(27):

(32) A= 1(828)21(0)2
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the changeof signin the first vectorfield is irrelevant. Taking the Fourier transformof (32) in the x and t variableswe obtain

(33) + (42

which agreeswith (31). To usetheseideason the quarticoscillatorwe regularize(28):

(34) Ox2

andthis is the Fourier transformin y of the subellipticoperator

(35) A= ~O)2 (x2+)2;

subelliptic becauseat x = 0 we only have1 vectorfield 0/Ox in JR2. To invert (35) we introduce

R= ~(z6 + (x’)6 + Ply — 112),

Ixx’13
R

xx’
‘a = sgn(xx’) =

8 Theorem. (35) has the fundamental solution F(x, y — VI; x’), where

(36) ~

with

0= 1 f1J1 K(v,jDiWp)duidu
2

a o 9~/6u1/S(1— u1)~/
4(1—

K(v,z) — ______________

p~(z2)— 2z1/Sv’

— (1 ± 1 — z2)1/3 — (1

—
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9 Corollary. The inversekernel of the quartic oscillator (28) is

(37) + e72~F(x,y; x’)dy,

whereF is piven by (36).
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The higher step case,k> 1

No groupstructure,andthe complexbicharacteristicsrun between2 arbitrarypoints (xCo),~(O))and (~, y). We obtain 2 invariants

of the motion, the energyB andtheangularmomentum(2, andp andv may be found in termsof E and=2.In particular

p = —i(y — ~(0))± — Er + 2 sgnr[(2E1z12 ±W(1z12)2)”’2 — (2EIz(0) 2 ±W(jz~0~ 12)2)1/2],

whereoneusestheprincipal branchof the squareroots,and

(38) W(u)= 2kuk £2 (2 =

10 Theorem. k> 1. ThefundamentalsolutionFQc,y;x(0),yC0))of A has the following invariant representation:

~jEvdw

wherethe secondorder transport equation for ‘a maybe reducedto an Euler-Poisson-Darbowrequationand solved ernplicitly as a function

of E and (2. Namely,

v = ~—~<A±—p>A(A~+pYAL(q±,q—),(40)

(39)

= 1-(2±±g±,
(41) k

(42)

(4= lim R
~-4 ±00

g~= lim g,
r—4±00

(A±~

andL(q+, q) is a hyperpeometricfunction of 2 variables,

17’ (1— q~s$%(1 — q llk)(
1 — (q+q~)ks~ps~~)

1
(43) L(q+,q—) —

1 —
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Heat kernels

Thereexistno explicit heatkernelfor ahigherstepoperatorasyet. For the examplesof this lecturewe arelooking for aheatkern5l

in the form

1 f it~ jim f,(44) p -~.] C~W(—frdr) —~ j ~4flJ(ffr~f f±=

where f = rg. fr turns out to be aconstantof motion,just like Pr = —Eis; i.e. aconstantalong thebicharacteristics.ThenWis a

solutionof

(45) OW

where
8

(46) Or

is derivationalongthe bicharacteristiccurve. (45) maybeput in thefollowing form:

(47) [/mIAflOWATXY1 =pAVV, f=rp.
-t-IAY)-y——9r4~&VYj

This shouldb6 comparedto the e4uationfor thevolumeelement‘a of (40) givenby

By
(48) (T+AP)t —g.,-Av.=O.

We note that (48) maybe reducedto an Euler-Poisson-Darbouxequationby aclever choice of coordinates.Thusto find ahigher step

heatkernelwe needasolutionto (47). (48) suggeststhat onemaytry to find suchasolutionas aperturbationof the volume element

of the fundamentalsolution.

Remark. Although I workedwith examplesonly, all our formulas anddifferential equationsare invariant and apply to general

sub-ellipticoperators.
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