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1 Overview

Renormalization theory is a venerable subject put to daily use in many branches
of physics. Here, we focus on its applications in quantum field theory, where a
standard perturbative approach is provided through an expansion in Feynman
diagrams. Whilst the combinatorics of the Bogoliubov recursion, solved by
suitable forest formulas, has been known for a long time, the subject regained
interest on the conceptual side with the discovery of an underlying Hopf algebra
structure behind these recursions.

Perturbative expansions in quantum field theory are organized in terms of one
particle irreducible (1PI) Feynman graphs. The goal is to calculate the cor-
responding one-particle irreducible Green functions order by order in the cou-
pling constants of the theory, by applying Feynman rules to these 1PI graphs
of a renormalizable theory under consideration. This allows to disentangle the
problem into an algebraic part and an analytic part.

For the former one studies Feynman graphs as combinatorial objects which
lead to the Lie and Hopf algebras discussed below. Feynman rules then as-
sign analytic expressions to these graphs, with the analytic structure of finite
renormalized quantum field theory largely dictated by the underlying algebra.

The objects of interest in quantum field theory are the 1PI Green functions.
They are parameterized by the quantum numbers, -masses, momenta, spin and
such-, of the particles participating in the scattering process under considera-
tion. We call a set of such quantum numbers an external leg structure r. For
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example, the three terms in the Lagrangian of massless quantum electrodynam-
ics correspond to

r ∈ { , , }. (1)

Note that the Lagrangian L of massless quantum electrodynamics is obtained
accordingly as

L = φ̂( )−1 + φ̂( ) + φ̂( )−1 = ψ̄∂/ψ + ψ̄A/ψ +
1
4
F 2, (2)

where φ̂ are coordinate space Feynman rules.

The renormalized 1PI Green function in momentum space, G
r
R({g}; {p}, {m}; µ),

is obtained as the image under renormalized Feynman rules φR applied to a se-
ries of graphs

Γr = 1 +
∞∑

k=1

gkc
r
k ≡ 1 +

∑

res(Γ)=r

g|Γ|
Γ

Sym(Γ)
. (3)

Here r is a given such external leg structure, while c
r
k is the finite sum of 1PI

graphs having k loops,

c
r
k =

∑
res(Γ)=r
|Γ|=k

Γ
Sym(Γ)

, (4)

and 0 < g < 1 is a coupling constant. The generalization to the case of several
couplings {g} and masses {m} is straightforward. In the above, the sum is over
all 1PI graphs with the same given external leg structure. We have denoted the
map which assigns r to a given graph a residue, for example

res( ) = . (5)

The unrenormalized but regularized Feynman rules φ assign to a graph a func-
tion (Γ[0] and Γ[1]int being the set of vertices v and internal edges e of Γ)

φ(Γ)({p}, {m}; µ, z) =
∫ ∏

v∈Γ[0]

δ(4)


 ∑

f incident v

kf


 ∏

e∈Γ
[1]
int

Prop(ke)
d4ke

4π2
, (6)

and formally the unrenormalized Green function

Gr
u({g}; {p}, {m}; µ, z) = φ(Γr) ({g}; {p}, {m};µ, z) , (7)

which is a function of a suitably chosen regulator z. Note that in (6) the four-
dimensional Dirac δ distribution guarantees momentum conservation at each
vertex and restricts the number of four-dimensional integrations to the number
of independent cycles in the graph. We assume that the reader is familiar with
the readily established fact that these integrals suffer from UV singularities
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which render the integration over the momenta in internal cycles ill-defined. We
also remind the reader that the problem persists in coordinate space, where one
confronts the continuation of products of distributions to regions of coinciding
support. We restrict ourselves here to a discussion of the situation in momentum
space and refer the reader to the literature for the situation in coordinate space.

Ignoring problems of convergence in the sum over all graphs, the problem of
renormalization is to make sense of these functions term by term: We have to
determine invertible series Zr({g}, z) in the couplings g such that the modified
Lagrangian

L̃ =
∑

r

Zr({g}, z) φ̂(r) (8)

produces a perturbation series in graphs which allows for the removal of the
regulator z.

This amounts to a transition from unrenormalized to renormalized Feynman
rules φ → φR. Let us first describe how this transition is achieved using the Lie-
and Hopf algebra structure of the perturbative expansion which we describe in
detail below:

• Decide on the free fields and local interactions of the theory, appropriately
specifying quantum numbers (spin, mass, flavor, color and such) of fields,
restricting interactions so as to obtain a renormalizable theory.

• Consider the set of all 1PI graphs with edges corresponding to free-field
propagators. Define vertices for local interactions. This allows to con-
struct a pre-Lie algebra of graph insertions. Anti-symmetrize this pre-Lie
product to get a Lie algebra L of graph insertions and define the Hopf al-
gebra H which is dual to the enveloping algebra U(L) of this Lie algebra.

• Realize that the coproduct and antipode of this Hopf algebra give rise to
the forest formula which generates local counterterms upon introducing a
Rota–Baxter map, a renormalization scheme in physicists’ parlance.

• Use the Hochschild cohomology of this Hopf algebra to show that you can
absorb singularities in local counterterms.

• Determine the co-representations of this Hopf algebra to identify the sub-
Hopf algebras corresponding to time-ordered products in physical fields.
This is most easily achieved by rewriting the Dyson–Schwinger equations
using Hochschild one-cocycles.

The last point exhibits close connections in particular between the structure
of gauge theories and the co-representation theory of their perturbative Hopf
algebras which we discuss below briefly.

This program can be carried out in coordinate space as well as momentum space
renormalization. It has given a firm mathematical background to the process
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of renormalization justifying the practice of quantum field theory. The notion
of locality has achieved a precise formulation in terms of the Hochschild co-
homology of the perturbation expansion. In momentum space, this approach
emphasizes the connections to number theory which emerge when one inves-
tigates the role of the Hopf algebra primitives which furnish the Hochschild
one-cocycles underlying locality.

The next sections describe the above set-up in some detail.

2 Lie- and Hopf algebras of graphs

All algebras are supposed to be over some field K of characteristic zero, associa-
tive and unital, and similarly for co-algebras. The unit (and by abuse of notation
also the unit map) will be denoted by I, the co-unit map by ē. All algebra ho-
momorphisms are supposed to be unital. A bialgebra (A =

⊕∞
i=0 Ai,m, I, ∆, ē)

is called graded connected if AiAj ⊂ Ai+j and ∆(Ai) ⊂
⊕

j+k=i Aj ⊗ Ak, and
if ∆(I) = I⊗ I and A0 = kI, ē(I) = 1 ∈ K and ē = 0 on

⊕∞
i=1 Ai. We call ker ē

the augmentation ideal of A and denote by P the projection A → ker ē onto
the augmentation ideal, P = id − Iē. Furthermore, we use Sweedler’s notation
∆(h) =

∑
h′ ⊗ h′′ for the coproduct. We define

Aug(k) =


P ⊗ · · · ⊗ P︸ ︷︷ ︸

k times


 ∆k−1, A → {ker ē}⊗k (9)

as a map into the k-fold tensorproduct of the augmentation ideal. We let A(k) =
kerAug(k+1)/ kerAug(k), ∀k ≥ 1. All bialgebras considered here are bigraded
in the sense that

A =
∞⊕

i=0

Ai =
∞⊕

k=0

A(k), (10)

where Ak ⊂ ⊕k
j=1A

(j) for all k ≥ 1. A0 ' A(0) ' K.

The first construction we have to study is the pre-Lie algebra structure of 1PI
graphs.

2.1 The Pre-Lie Structure

For each Feynman graph we have vertices as well as internal and external edges.
External edges are edges which have an open end not connected to a vertex.
They indicate the particles participating in the scattering amplitude under con-
sideration and each such edge carries the quantum numbers of the corresponding
free field. The internal edges and vertices form a graph in their own right. For
an internal edge, both ends of the edge are connected to a vertex.
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We are considering 1PI Feynman graphs. A graph Γ is 1PI if and only if all
graphs, obtained by removal of any one of its internal edges, are still connected.
Such 1PI graphs are naturally graded by their number of independent loops,
the rank of their first homology group H[1](Γ,Z). We write |Γ| for this degree of
a graph Γ. Note that |res(Γ)| = 0, where we let res(Γ) be the graph obtained
when all edges in Γ[1]

int shrink to a point, as before. Note that the graph we
obtain in this manner consists of a single vertex, to which the edges Γ[1]

ext are
attached.

For a 1PI graph Γ we write Γ[0] for its set of vertices and Γ[1] = Γ[1]
int ∪ Γ[1]

ext for
its set of internal and external edges. We let ωr be the number of spacetime
derivatives appearing in the corresponding monomial in the Lagrangian.

Having specified free quantum fields and local interaction terms between them,
one immediately obtains the set of 1PI graphs, and can consider for a given
external leg structure r the set of graphs with that external leg structure. For
a renormalizable theory, we can define a superficial degree of divergence

ω =
∑

r∈Γ
[1]
int∪Γ[0]

ωr − 4|H[1](Γ,Z)|, (11)

for each such external leg structure: ω(Γ) = ω(Γ′) if res(Γ) = res(Γ′), all
graphs with the same external leg structure have the same superficial degree of
divergence, and only for a finite number of distinct external leg structures r will
this degree indeed signify a divergence.

This leaves a finite number of external leg structures to be considered to which
we restrict from now. Our first observation is that there is a natural pre-Lie
algebra structure on 1PI graphs.

To this end, we define a bilinear operation

Γ1 ∗ Γ2 =
∑

Γ

n(Γ1, Γ2; Γ)Γ, (12)

where the sum is over all 1PI graphs Γ. Here, n(Γ1, Γ2; Γ) is a section coefficient
which counts the number of ways a subgraph Γ2 can be reduced to a point in
Γ such that Γ1 is obtained. The above sum is evidently finite as long as Γ1

and Γ2 are finite graphs, and the graphs which contribute necessarily fulfill
|Γ| = |Γ1|+ |Γ2| and res(Γ) = res(Γ1).

One then has:

Theorem 1 The operation ∗ is pre-Lie:

[Γ1 ∗ Γ2] ∗ Γ3 − Γ1 ∗ [Γ2 ∗ Γ3] = [Γ1 ∗ Γ3] ∗ Γ2 − Γ1 ∗ [Γ3 ∗ Γ2]. (13)

which is evident when one rewrites the ∗ product in suitable gluing operations.
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To understand this theorem, note that the equation claims that the lack of
associativity in the bilinear operation ∗ is invariant under permutation of the
elements indexed 2, 3. This suffices to show that the anti-symmetrization of this
map fulfils a Jacobi identity. Hence we get a Lie algebra L by anti-symmetrizing
this operation:

[Γ1, Γ2] = Γ1 ∗ Γ2 − Γ2 ∗ Γ1. (14)

This Lie algebra is graded and of finite dimension in each degree. Let us look
at a couple of examples for pre-Lie products:

∗ = , (15)

∗ = 2 , (16)

∗ = , (17)

∗ = 2 , (18)

∗ = , (19)

∗ = . (20)

Together with L one is led to consider the dual of its universal enveloping algebra
U(L) using the theorem of Milnor and Moore. For this we use the above grading
by the loop number.

This universal enveloping algebra U(L) is build from the tensor algebra

T =
⊕

k

T k, T k = L ⊗ · · · ⊗ L︸ ︷︷ ︸
k times

, (21)

by dividing out the ideal generated by the relations

a⊗ b− b⊗ a = [a, b] ∈ L. (22)

Note that in U(L) we have a natural concatenation product m∗. Even more,
U(L) carries a natural Hopf algebra structure with this product. For that, the
Lie algebra L furnishes the primitive elements:

∆∗(a) = a⊗ 1 + 1⊗ a, ∀a ∈ L. (23)

It is by construction a connected finitely graded Hopf algebra which is co-
commutative but not commutative.

We can then consider its graded dual which will be a Hopf algebra H(m, I, ∆, ē)
which is commutative but not co-commutative. One finds it upon using a Kro-
necker pairing

< ZΓ, δΓ′ >=
{

1, Γ = Γ′

0, else
. (24)
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The space of primitives of U(L) is in one-to-one correspondence with the set
Indec(H) of indecomposables of H, which is the linear span of its generators.

One finds

Theorem 2

< ZΓ1 ⊗ ZΓ2 − ZΓ2 ⊗ ZΓ1 , δΓ >=< Z[Γ2,Γ1], δΓ > . (25)

For example, one finds
〈

Z ⊗ Z − Z ⊗ Z , δ

〉

=

〈
Z ⊗ Z − Z ⊗ Z , ∆


δ




〉

=

〈
Z − 2Z , δ

〉
= 2. (26)

H is a graded commutative Hopf algebra which suffices to describe renormal-
ization theory as we see in the next section. We have formulated it for the
superficially divergent 1PI graphs of the theory with the understanding that
the residues of these graphs are in one-to-one correspondence with the terms in
the Lagrangian of a given theory. Often it is the case that several terms in a
Lagrangian correspond to graphs with the same number and type of external
legs, but correspond to different form-factor projections of the graph. In such
cases, the above approach can be easily adopted considering suitably colored or
labeled graphs. A similar remark applies if one desires to incorporate renormal-
ization of superficially convergent Green functions, which requires nothing more
than the consideration of an easily obtained semi-direct product of the Lie alge-
bra of superficially divergent graphs with the abelian Lie algebra of superficially
convergent graphs.

2.2 The principle of multiplicative subtraction

The above algebra structures are available once one has decided on the set of
1PI graphs of interest. We now use them towards the renormalization of any
such chosen local quantum field theory.

From the above, one-particle irreducible graphs Γ provide the linear generators
δΓ of the Hopf algebra H = ⊕∞i=0Hi, where Hlin = span(δΓ) and their disjoint
union providing the commutative product.
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Let now Γ be a 1PI graph. We find the Hopf algebra H as described above to
have a co-product explicitely given as ∆ : H → H⊗H:

∆(Γ) = Γ⊗ 1 + 1⊗ Γ +
∑

γ⊂Γ

γ ⊗ Γ/γ, (27)

where the sum is over all unions of one-particle irreducible (1PI) superficially
divergent proper subgraphs, and we extend this definition to products of graphs
so that we get a bi-algebra.

While the Lie bracket inserted graphs into each other, the co-product disentan-
gles them. It is this latter operation which is needed in renormalization theory:
we have to render each subgraph finite before we can construct a local coun-
terterm. That is precisely what the Hopf algebra structure maps will do for
us.

Having a co-product, two further structure maps of H are immediate, the co-
unit and the antipode. The co-unit ē vanishes on any non-trivial Hopf algebra
element, ē(1) = 1, ē(X) = 0. The antipode is

S(Γ) = −Γ−
∑

γ⊂Γ

S(γ)Γ/γ. (28)

We can work out a few co-products and antipodes as follows:

Aug(2)( ) = 2 ⊗ , (29)

Aug(2)( ) = 2 ⊗ , (30)

Aug(2)( ) = ⊗ , (31)

Aug(2)( ) = 2 ⊗ , (32)

Aug(2)( ) = 2 ⊗ , (33)

Aug(2)( ) = ⊗ . (34)

We give just one example for an antipode:

S( ) = − + 2 . (35)

Note that for each term in the sum ∆̃(Γ) =
∑

i Γ′(i)⊗Γ′′(i) we have unique gluing
data Gi such that

Γ = Γ′′(i)←GiΓ
′
(i), ∀i. (36)

These gluing date describe the necessary bijections to glue the components Γ′(i)
back into Γ′′(i) so as to obtain Γ: using them, we can reassemble the whole
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from its parts. Each possible gluing can be interpreted as a composition in the
insertion operad of Feynman graphs.

We have by now obtained a Hopf algebra generated by combinatorial elements,
1PI Feynman graphs. Its existence is automatic from the above choices of
interactions and free fields. What is left to us is a structural analysis of these
algebras for the renormalizable theories we are confronted with in four spacetime
dimensions.

The assertion underlying perturbation theory is the fact that meaningful ap-
proximations to physical observable quantities can be found by evaluating these
graphs using Feynman rules.

First, as disjoint scattering processes give rise to independent amplitudes one is
led to the study of characters of the Hopf algebra, maps φ : H → V such that
φ ◦m = mV (φ⊗ φ).

Such maps assign to any element in the Hopf algebra an element in a suitable
target space V . The study of tree-level amplitudes in lowest order perturbation
theory justifies to assign to each edge a propagator and to each elementary
scattering process a vertex which define the Feynman rules φ(res(Γ)) and the
underlying Lagrangian, on the level of residues of these very graphs. As graphs
themselves are constructed from edges and vertices, such residues, one is led to
assign to each Feynman graph an evaluation in terms of an integral over the
continues quantum numbers assigned to edges or vertices, which leads to the
familiar integrals over momenta in closed loops mentioned before.

Then, with the Feynman rules providing a canonical character φ, we will have
to make one further choice: a renormalization scheme. The need for such a
choice is no surprise: after all we are eliminating short-distance singularities in
the graphs which renders their remaining finite part ambiguous, albeit in a most
interesting manner.

Hence we choose a map R : V → V , from which we obviously demand that is
does not modify the UV-singular structure, and furthermore that it obeys

R(xy) + R(x)R(y) = R(R(x)y) + R(xR(y)), (37)

an equation which guarantees the multiplicativity of renormalization and is at
the heart of the Birkhoff decomposition which emerges below: it tells us that
elements in V split into two parallel subalgebras given by the image and kernel
of R. Algebras for which such a map exists are known as Rota–Baxter algebras.
Rota–Baxter algebras play a role for associative algebras which is similar to
the role Yang–Baxter algebras play for Lie algebras. The structure of these
algebras allows to connect renormalization theory to integrable systems. Also,
most of the results obtained initially for a specific renormalization scheme like
minimal subtraction can be obtained in general upon a structural analysis of
the corresponding Rota–Baxter algebras.

To see how all the above comes together in renormalization theory we define a
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further character Sφ
R which deforms φ ◦ S slightly and delivers the counterterm

for Γ in the renormalization scheme R:

Sφ
R(Γ) = −RmV (Sφ

R ⊗ φ ◦ P )∆ = −R[φ(Γ)]−R


∑

γ⊂Γ

Sφ
R(γ)φ(Γ/γ)


 (38)

which should be compared with the undeformed

φ ◦ S = mV (S ◦ φ⊗ φ ◦ P )∆ = −φ(Γ)−
∑

γ⊂Γ

φ ◦ S(γ)φ(Γ/γ). (39)

The fact that R is a Rota–Baxter map ensures that Sφ
R is an element of the

character group G of the Hopf algebra, Sφ
R ∈ Spec(G). Note that we now have

determined the modified lagrangian:

Zr = Sφ
R(Γr). (40)

The classical results of renormalization theory follow immediately using this
group structure: We obtain the renormalization of Γ by the application of a
renormalized character

Sφ
R ? φ(Γ) = mv(Sφ

R ⊗ φ)∆ (41)

and Bogoliubov’s R̄ operation as

R̄(Γ) = mV (Sφ
R ⊗ φ)(id⊗ P )∆(Γ) = φ(Γ) +

∑

γ⊂Γ

Sφ
R(γ)φ(Γ/γ), (42)

so that we have
Sφ

R ? φ(Γ) = R̄(Γ) + Sφ
R(Γ). (43)

Here, Sφ
R ? φ is an element in the group of characters of the Hopf algebra, with

the group law given by the convolution

φ1 ? φ2 = mV ◦ (φ1 ⊗ φ2) ◦∆, (44)

so that the co-product, co-unit and co-inverse (the antipode) give the product,
unit and inverse of this group, as befits a Hopf algebra. This Lie group has the
previous Lie algebra L of graph insertions as its Lie algebra: L exponentiates
to G.

What we have achieved at this moment is a local renormalization of quantum
field theory. Let Mr be a monomial in the lagrangian L of degree ωr,

Mr = Dr{φ}. (45)

Then one can prove using the Hochschild cohomology of H:
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Theorem 3 (locality)
ZrDr{φ} = DrZ

r{φ}, (46)

renormalization commutes with infinitesimal space-time variations of the fields.

We can now work out the renormalization of a Feynman graph Γ.

∆( ) = ⊗ I+ I⊗ + 2 ⊗ (47)

φ̄( ) = φ( ) + 2Sφ
R( )φ( ) (48)

= φ( )− 2R
[
φ( )

]
φ( ) (49)

Sφ
R( ) = −R

[
φ̄( )

]
(50)

φR( ) ≡ Sφ
R ? φ

( )
= [id−R] ◦

[
φ̄( )

]
. (51)

In the above, we have given all formulas in their recursive form. Zimmermann’s
original forest formula solving this recursion is obtained when we trace our con-
siderations back to the fact that the co-product can be written in non-recursive
form as a sum over forests, and similarly for the antipode.

3 Diffeomorphisms of physical parameters

In the above, we effectively obtained a Birkhoff decomposition of the Feynman
rules φ ∈ Spec(G) into two characters φR

+ = Sφ
R ? φ ∈ Spec(G) and φR

− = Sφ
R ∈

Spec(G), for any Rota–Baxter map R. Thanks to Atkinson’s theorem this is
possible for any renormalization scheme R. For the minimal subtraction scheme
it amounts to the decomposition of the Laurent series φ(Γ)(ε), which has poles
of finite order in the regulator ε, into a part holomorphic at the origin and a
part holomorphic at complex infinity. This has a particularly nice geometric
interpretation upon considering the Birkhoff decomposition of a loop around
the origin, providing the clutching data for the two half-spheres defined by that
very loop.

Whilst in this manner a satisfying understanding of perturbative renormaliza-
tion is obtained, alas the character group G is a rather big and poorly understood
object. On the other hand, renormalization can be captured by the study of
diffeomorphisms of physical parameters, as by the very definition the range of
allowed modification in renormalization theory is the variation of the coefficients
of monomials φ̂(r) of the underlying Lagrangian

L =
∑

r

Zr φ̂(r). (52)
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Thus one desires to obtain the whole Birkhoff decomposition at the level of
diffeomorphisms of the coupling constants.

The crucial step toward that goal is to realize the role of a standard quantum
field-theoretic formula of the form

gnew = gold Zg, (53)

where
Zg =

Zv

∏
e∈res(v)

[1]
ext

√
Ze

, (54)

for some vertex v, which obtains the new coupling in terms of a diffeomorphism
of the old. This formula provides indeed a Hopf algebra homomorphism from
the Hopf algebra of diffeomorphisms to the Hopf algebra of Feynman graphs,
regarding Zg, a series over counterterms for all 1PI graphs with the external leg
structure corresponding to the coupling g, in two different ways: it is at the same
time a formal diffeomorphism in the coupling constant gold and a formal series
in Feynman graphs. As a consequence, there are two competing coproducts
acting on Zg. That both give the same result defines the required homomor-
phism, which transposes to a homomorphism from the largely unknown group
of characters of H to the one-dimensional diffeomorphisms of this coupling.

In summary, one finds that a couple of basic facts enable one to the transition
from the foreign territory of the abstract group of characters of a Hopf algebra
of Feynman graphs (which, by the way, equals the Lie group assigned to the Lie
algebra with universal enveloping algebra the dual of this Hopf algebra) to the
rather concrete group of diffeomorphisms of physical observables. These steps
are:

• Recognize that Z factors are given as counterterms over formal series of
graphs starting with 1, graded by powers of the coupling, hence invertible.

• Recognize the series Zg as a formal diffeomorphism, with Hopf algebra
coefficients.

• Establish that the two competing Hopf algebra structures of diffeomor-
phisms and graphs are consistent in the sense of a Hopf algebra homomor-
phism.

• Show that this homomorphism transposes to a Lie algebra and hence Lie
group homomorphism.

The effective coupling geff(ε) now allows for a Birkhoff decomposition in the
space of formal diffeomorphisms:

Theorem 4 Let the unrenormalized effective coupling constant geff(ε) viewed
as a formal power series in g be considered as a loop of formal diffeomorphisms
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and let geff(ε) = (geff−)−1(ε) geff+(ε) be its Birkhoff decomposition in the group
of formal diffeomorphisms. Then the loop geff−(ε) is the bare coupling constant
and geff+(0) is the renormalized effective coupling.

The above results hold as they stand for any massless theory which provides
a single coupling constant. If there are multiple interaction terms in the La-
grangian, one finds similar results relating the group of characters of the corre-
sponding Hopf algebra to the group of formal diffeomorphisms in the multidi-
mensional space of coupling constants.

4 The role of Hochschild cohomology

The Hochschild cohomology of the combinatorial Hopf algebras which we discuss
here plays three major roles in quantum field theory: it allows to prove locality
from the accompanying filtration by the augmentation degree coming from the
kernels kerAug(k), it allows to write the quantum equations of motion in terms
of the Hopf algebra primitives, elements in Hlin ∩ {kerAug(2)/ kerAug(1)}, and
identifies the relevant sub-Hopf algebras formed by time-ordered products. Be-
fore we discuss these properties, let us first introduce the relevant Hochschild
cohomology.

4.1 Hochschild cohomology of bialgebras

Let (A, m, I,∆, ε) be a bialgebra, as before. We regard linear maps L : A → A⊗n

as n-cochains and define a coboundary map b, b2 = 0, by

bL := (id⊗ L) ◦∆ +
n∑

i=1

(−1)i∆i ◦ L + (−1)n+1L⊗ I (55)

where ∆i denotes the coproduct applied to the i-th factor in A⊗n, which defines
the Hochschild cohomology of A.

For the case n = 1, (55) reduces to, for L : A → A,

bL = (id⊗ L) ◦∆−∆ ◦ L + L⊗ I. (56)

The category of objects (A,C) which consists of a commutative bialgebra A and
a Hochschild one-cocycle C on A has an initial object (Hrt, B+), where Hrt is
the Hopf algebra of (non-planar) rooted trees and the closed but non-exact one-
cocycle B+ grafts a product of rooted trees together at a new root as described
below.

The higher (n > 1) Hochschild cohomology of Hrt vanishes, but the closedness
of B+ will turn out to be crucial for what follows.
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4.2 The Hopf algebra of rooted trees

A rooted tree is a simply-connected contractible compact graph with a dis-
tinguished vertex, the root. A forest is a disjoint union of rooted trees. Iso-
morphisms of rooted trees or forests are isomorphisms of graphs preserving the
distinguished vertex/vertices. Let t be a rooted tree with root o. The choice of
o determines an orientation of the edges of t, away from the root, say. Forests
are graded by the numbers of vertices they contain.

Let Hrt be the free commutative algebra generated by rooted trees. The com-
mutative product in Hrt corresponds to the disjoint union of trees, such that
monomials in Hrt are scalar multiples of forests. We demand that the linear
operator B+ on Hrt, defined by

B+(I) = •, (57)

B+(t1 . . . tn) =
•

• •@
@

¡
¡

A
A

¢
¢

t1 . . . tn
, (58)

is a Hochschild 1-cocycle, which makes Hrt a Hopf algebra. The resulting co-
product can be described as follows

∆(t) = I⊗ t + t⊗ I+
∑

adm.c

Pc(t)⊗Rc(t), (59)

where the sum goes over all admissible cuts of the tree t. Such a cut of t is a
nonempty set of edges of t to be removed. The forests which are disconnected
from the root upon removal of those edges is denoted by Pc(t) and the part which
remains connected to the root is denoted by Rc(t). A cut c(t) is admissible if for
each vertex l of t it contains at most one edge on the path from l to the root.

This Hopf algebra of non-planar rooted trees is the universal object after which
all such commutative Hopf algebrasH providing pairs (H, B), for B a Hochschild
one-cocycle, are formed:

Theorem 5 The pair (Hrt, B+), unique up to isomorphism, is universal among
all such pairs. In other words for any pair (H, B) where H is a commutative
Hopf algebra and B a closed non-exact one-cocycle, there exists a unique Hopf
algebra morphism Hrt

ρ→ H such that B ◦ ρ = ρ ◦B+.

This theorem suggests to investigate the Hochschild cohomology of the Hopf
algebras of 1PI Feynman graphs. It largely illuminates the structure of 1PI
Green functions.

4.3 The roles of Hochschild cohomology

The Hochschild cohomology of the Hopf algebras of 1PI graphs sheds light on
the structure of 1PI Green function in at least four different ways:
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• it gives a coherent proof of locality of counterterms -the very fact that

[Zr, Dr] = 0, (60)

the coefficients in the Lagrangian remain independent of momenta, and
hence the Lagrangian a polynomial expression in fields and their deriva-
tives;

• the quantum equation of motions take a very succinct form identifying the
Dyson kernels with the primitives of the Hopf algebra;

• sub-Hopf algebras emerge from the study of the Hochschild cohomology
which connect the representation theory of these Hopf algebras to the
structure of theories with internal symmetries;

• these Hopf algebras are intimately connected to the structure of transcen-
dental functions like the generalized polylogarithms which play a promi-
nent role these days ranging from applied particle physics to recent devel-
opments in mathematics.

To determine the Hochschild one-cocycles of some Feynman graph Hopf algebra
H, one determines first the primitives graphs γ of the Hopf algebra, which by
definition fulfill

∆(γ) = γ ⊗ I+ I⊗ γ. (61)

Using the pre-Lie product above, one then determines maps

Bγ
+ : H → Hlin (62)

such that
Bγ

+(h) = Bγ
+(h)⊗ I+

(
id⊗Bγ

+

)
∆(h), (63)

where Bγ
+(h) =

∑
Γ n(γ, h, Γ)Γ. The coefficients n(γ, h, Γ) are closely related to

the section coefficients we had before.

Using the definition of the Bogoliubov map φ̄ this immediately shows that

Sφ
R(Bγ

+(h)) =
∫

Dγ←GiφR(h), (64)

which proves locality of counterterms upon recognizing that Bγ
+ increases the

augmentation degree. Here, the insertion of the functions for the subgraph is
achieved using the relevant gluing data of (36).

To recover the quantum equation of motions from the Hochschild cohomology,
one proves that

Γr = 1 +
∑

γ

g|γ|

sym(γ)
Bγ

+(Xγ), (65)

where
Xγ =

∏

e∈γ
[1]
int

∏

v∈γ[0]

Γv/Γe (66)
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has the required solution. Upon application of the Feynman rules the maps Bγ
+

turn to the integral kernels of the usual Dyson–Schwinger equations. This allows
for new non-perturbative approaches which are a current theme of investigation.

Finally, we note that the one-cocycles introduced above allow to determine sub
Hopf algebras of the form

∆(cr
n) =

∑
P ({cs

j})⊗ c
r
j , (67)

where the c
s
j are defined in Eq.(3). These algebras do not necessitate the consid-

erations of single Feynman graphs any longer, but allow to establish renormal-
ization directly for the sum of all graphs at a given loop order. They hence es-
tablish a Hopf algebra structure on time-ordered products in momentum space.
For theories with internal symmetries one expects and indeed finds that the
existence of these sub-algebras establishes relations between graphs which are
the Slavnov–Taylor identities between the couplings in the lagrangian.

5 Outlook

Thanks to the Hopf and Lie algebra structures described above quantum field
theory has started to reveal its internal mathematical structure in recent years,
which connects it to motivic theory and arithmetic geometry. Conceptually,
quantum field theory has been the most sophisticated means by which a physi-
cist can describe the character of the physical law. We slowly start understand-
ing that in its short–distance singularities it encapsulates concepts of matching
beauty. We can expect local point-particle quantum field theory to remain a
major topic of mathematical physics investigation in the foreseeable future in-
deed.

See also

perturbative quantum field theory
Dyson–Schwinger equations
BPHZ renormalization
the renormalization group
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