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Quantum computers could overpower classical ones only if feasible schemes
af error reduction and correction exist!

See discussion oj "chemical computer" which executes factoring algorithm
R. A., quant-ph/0306103

The theory of fault-tolerant quantum computation - threshold results

E. Knill et. al, Introduction to Quantum Error Correction,
quant-ph/0207170, 30 Jul 2002

E. Knill, R. Lafl.amme and W. Zurek, Resilient quantum computation,
Science, 279, 342 (1998)

D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation wit h
constant error, quant-ph/9906129, (1999)

We consider a simpler problem: maitaining a single uknown qubit
state for an arbitrarily long period of time
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Protecting unknown qubit state
in the environment at the temperature T

Remark: Known qubit state 'l/Jcan be protected with exponentially small
error
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A physical model
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Theoretical description

A) Phenomenological

B) Hamiltonian
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Phenomenological error model and error corrections

lnitial state

Pin = I~ >< ~10 PA , ~ - unknown qubit state

Discrete time evolution

where Ump = UmPut -unitary gates, Am - error CP maps.

Final state

Pout = rPin

Error

Threshold results

Any quantum state can be efficiently maintained Jor an arbitrarily long pe-
riod oj time at arbitrarily small error f provided the decoherehce rate due to
the interaction with an environment is lower that a certain threshold value.

or in a weaker form

Any quantum state can be efficiently maintained Jor an arbitrarily long pe-
riod oj time at the error f arbitrarily close to the initial error fO provided
the decoherehce rate due to the interaction with an environment is lower
that a certain threshold value.

"Efficiently" - using polynomial in the number of time step s resources Le.
"ancillas" and gates
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Drawbacks of phenomenological models

1) Discrete time model i= continuous time model

Example: Pure dephasing

Pj = Ij > < j I , Ij > - basis in Hilbert space

Discrete time

Ap=(l-p)P+PLPjpPj, LPj=I
j j

If [Um,Pj] = Oand [Pin,Pj] = Othen

noise disapears!

Continuous time (li = 1)

Noise does not disapear and strongly depends on H (t) !
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2) Quantum noise is non-Markovian

Qubit-bath interaction

Spectral density

Strictly Markovian noise

Tr(PB RR(t)) f'V 5(t)

or

R(w) = constant

produces (bistothasic) semigroup satisfying

KMS- condition

R( -w) = e-wjkBT R(w)

contradicts strict Markov property ("quantum memory" TQ = li/kB T)

MME in the weak coupling limit (for constant H)

,

~ A2 { R( UJ)([0-- ,p",-+] + [0--Pt, 0-+]) + R( -UJ) ([0-+, Pto--] + [0-+ Pt, o--]) }

Dissipative part depends on the Hamiltonian!
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Hamiltonian model

Single qubit -O, the error correcting n-qubit system A and the bath B.

Interaction Hamiltonian

n

Hint = AL L a~ @ Rk
a=O k

Spectral density R~f (UJ)

KMS-condition

Non-decoupling condition for all (relevant) UJ> °

- decoherence time

Total Hamiltonian

initial state
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Partial results

1) T = 00 and Markovian model, i.e. R~~(UJ)rv 6af36kl

3 n

~Pt = -i[H(t), Pt] - 'YL L[(}~' [()~,Pt]]k=la=O

Define I (p) = lag d - S (p) (d- clim af the Hilbert space)

Lemma

The entrapy af the qubit-O satisfies

S (p~O»)> lag 2(1 - e -4,t (n + 1))

Ta keep S(p~O»)< Ewe neecl at least

n(t) > (1 - ~ )e4,t
lag 2

expanentially large num ber af ancillas.

Compare with Aharonov et.al. quant-ph/9611028 - constant input of "fresh
qubits" necessa~y
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2. Error formula in Born approximation

R.A. and M. Horodecki, ,P. Horodecki and R. Horodecki, Phys.Rev. A 65,
062101 (2002)
R.A., Controlled Quantum Open Systems, in lrreversible Quantum Dynam-
ics LNP 622, Springer, Berlin (2003)

Reduced time evolution of POA

where

1
7/2

UOA = T exp (-i HOA (t) dt)-7/2

with H = [H,.] and K = ~(1)

UOA = 1 0 UA .

~* - error map ls completely positive

d k

dt (T ex (t) = -i [HOA(t), (J~ (t)]

The error is given by
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Simplified non-ergodic Markovian model

We assume T = 00 and keep only the terms with a;. This makes states
commuting with 0"; invariant and aUows "fresh qubits".

Then introd ucing

, a = 0,1,2, ..., n

and averaging over an initial qubit-O state one obtains

2 n

1
7/2

1
7/2

E> -A2, L Tr( dt[l - Ag(t)2]PA) = F(t)dt
3 a=O -7/2 -7/2

F(t) > O ,

There exist unitary maps (encodings) U(t) for which F(t) = O. But initial
and final errors cannot be avoided. Moreover, F(t) = Ofor perfect tuning of
aU control parameters what is aIso not possible. As F(t) > Oerrors cannot
be corrected but only prevented. Non-negative error production- a new
face of the second law?

F(t)
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Thermodynamics of open systems

0-th Law: Return to equlibrium

lim p(t) = P/3 = Z-le-/3H
t-+cX)

I-st Law: Energy conservation

II-nd Law: Non-negative entropy production

dS dQ
dl = K(t)+ J3di ' K(t)> O

???- Law: Information about uknown state cannot be efficiently protected

Any (effieient) action on a single qubit whieh ean be deseribed in Hamil-
tonian terms eannot reduee the error below the value EOdepending on the
physieal implementation oj the qubit and its environment.

Essentially proven by the example of above.

Any (effieient) action on a single qubit whieh ean be deseribed in Hamilto-
nian terms eannot reduee the error below the value EO+ eT (Jor EO+ eT << 1)
where T is the period oj time and c is a strietly positive eonstant depending
on the physieal implementation oj the qubit and its environment.

To be proven rigorously.
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