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Lecture I: Connectivity

Information for Point Cloud Data



Qualitative Properties of Data

• Regression : very important method for the analysis of
various kinds of data

• Typically uses a theoretical model with various parameters,
and finds optimal values of the parameters

• Other methods provide quantitative information about spe-
cific aspects of the data, such as measures of spread, aver-
age, significance, clustering, etc.

Sometimes certain kinds of qualitative properties are impor-
tant in obtaining an overall understanding of the nature of the
data because

• Can suggest the form of a theoretical model

• Precise quantitive models are too complicated to obtain

• Qualitative information is sometimes actually more impor-
tant than more precise quantitative information



Example: Miller-Reaven Diabetes Study

• Study carried out in 1976, on 145 patients at Stanford Hos-
pital

• Most patients had a form of diabetes, although some were
normal

• For each patient, four metabolic variables (involving insulin
response and glucose tolerance) along with relative weight
were measured, giving a set of 145 points in 5D space

How to analyze the data to get information about the nature
of diabetes? Two problems are:

• Data is too high-dimensional to visualize

• No accepted theoretical model to describe the data

Miller and Reaven used the Projection Pursuit method to ob-
tain a useful projection of into 3D space



From: Annals of Statistics, Vol. 13, No. 2 June, 1985

Central core: Normal patients

Lobes: Type I and Type II diabetes, respectively

Conclusion: There are two essentially distinct forms of the
disease, one early onset and the other adult onset



Families of Images as Data Sets

• An image taken by a black and white digital camera can
be viewed as a point in pixel space, with a gray scale
coördinate for each pixel

• A family of pictures taken of a dynamic scene gives a data
set in pixel space. Its geometry should be related to the
geometry of the “phase space” for the problem

• Images can be viewed as an exotic coördinate system of
the phase space

• These coördinatizations are

– Very high dimensional

– Highly non-linear

– Not smooth

Question: Is it possible to obtain qualitative information
from the family of images directly without reconstructing the
geometry of the phase space?



Example: Periodic Motion in Space

• Data consists of pictures taken of a region in space with
digital camera

• Don’t have times at which the pictures are taken

• Question: Is there periodic motion going on in the re-
gion?

• Are not asking for the form of the orbit (circular, elliptical,
etc.)



Example: Lung Cancer Imaging

• 3D radiological images of cancerous lungs show both tu-
mors and blood vessels as areas of increased density

• Blood vessels show up as long tunnels in the image

• Tumors show up as balls

• Question: How to distinguish automatically between tu-
mors and blood vessels?

• It is not important to know exact shape of tumor or
blood vessel, at least initially

• The qualitative nature of the objects is crucial, not quan-
titative



What Kind of Qualitative Information Do We Want?

Connected components

• Two points x, y in a space X are connected by a path if
there is a continuous map ϕ : [0, 1] → X so that ϕ(0) = x
and ϕ(1) = y.

• The connected component of a point x ∈ X is the
collection of all points connected to x by a path

• The collection of connected components of points in X
forms a partition of X



• The number of connected components of X is a discrete
invariant of X

• Call it zeroth order connectivity information

• Connection to the diabetes problem:

If we remove the normal patients, the remaining pa-
tients decompose into two connected components

• Forming the collection of connected components is idealized
form of clustering

• A space is (path-)connected if it consists of one component



First Order Connectivity Information

• When a space is connected, pairs of points may be con-
nected in different ways

• We say one path is essentially the same as another if it
can be deformed to it

The two red paths are essentially the same, as are the two blue
paths, but the red paths are essentially distinct from the blue
paths



Useful Reformulation: The existence of essentially dis-

tinct paths is reflected in the presence of essentially distinct

loops

• The two distinct paths between points are “glued together”

at their endpoints to form a loop in the space

• In this case, the essentially distinct loops are parametrized

by the integers

• Parametrization is via winding number



• First order connectivity information can be applied to the

periodic motion problem

• If there is an object undergoing periodic motion in the

family of images, there will be an essential closed loop in

the phase space

• If the phase space is captured by the family of images,

we find that the essential closed loops in the space of

images are also parametrized by the integers

• If there are several objects undergoing periodic motion, the

closed loops will be parametrized by vectors of integers



Second and Higher Order Connectivity

Information

Suppose we have a void drilled out of a solid rectangular region

• The remaining space has only one component

• Any path is essentially equivalent to any other



In this case, a there is a 2D surface or cycle surrounding the

void

The cycle is essential in that it cannot be dragged around and

off the obstacle, just like an essential loop could not be dragged

around the obstacle



Connection with the lung cancer problem:

• If we remove the regions in the lung with higher density,

the tumors are voids and the blood vessels are tunnels

• Tunnels are detected by presence of essential loops

• Voids are detected the presence of essential cycles

So, if no essential cycles, then no tumors



Connectivity Information and Optimization

Let X be a space, and let f : X → R be a continuous function.

For r ∈ R, the excursion set for f at r, Er(f ), is the set

{x ∈ X|f (x) ≤ r}.

Connectivity information in Er(f ) reflects the presence of local

maxima for f at which the value of f is > r

This idea is called Morse theory, f is called a Morse func-

tion if it satisfies certain non-degeneracy conditions



How to Make Connectivity Information into

Precise Mathematics?

Simplicial Complexes

• n-Simplex: Convex hull of (n + 1) points in general po-

sition

• Simplicial Complex: A space written as a union of

simplices which intersect each other in faces (subsimplices)

• Abstract Simplicial Complex: A pair (V, Σ), where

V is a finite set, and Σ is a family of non-empty subsets of

V , so that σ ⊆ τ ∈ Σ implies σ ∈ Σ.

• Abstract simplicial complexes determine actual simplicial

complexes





Connected Components and Essential Loops for

Graphs

• Graph: One-dimensional simplicial complex

• Set up a matrix (“boundary matrix”) corresponding to

graph

• Rows correspond to vertices

• Columns correspond to edges



Entries in the Boundary Matrix

• Entry in intersection of a row and a column depends on

relationship of corresponding v and edge e

• Entry is 0 if v /∈ e

• Entry is -1 if v is initial vertex in e

• Entry is +1 if v is terminal vertex in e

(01) (02) (12)

0 −1 −1 0

1 1 0 −1

2 0 1 1



Connectivity Information and Boundary Matrix

• Perform Gaussian elimination on boundary matrix

• Number of essentially different loops

= Dim(null space of boundary matrix )

= # (free variables)

• Number of distinct components

= Dim(complement to column space of boundary matrix)

= # (rows) - # (pivot rows)



Higher Dimensional Complexes

• Construct boundary matrices ∂k for each k ≥ 0, with

∂k∂k+1 = 0

• Rows of ∂k correspond to k-simplices of simplicial complex

X

• Columns of ∂k correspond to (k + 1)-simplices of X

• Essential k- dimensional cycles are now counted as

Dim(Null space of ∂k−1) -

Dim(Complement of column space of ∂k)

• Precise mathematical formulation of “higher dimensional

cycles” for spaces given as simplicial complex



Homology

• Observation of E. Noether: #(Essential cycles) can

be viewed as the dimension of a vector space

• Proposed that there is value in studying the vector spaces

rather than just their dimensions

• For every k ≥ 0, obtain a vector space Hk(X) for any

simplicial complex

• Example of “categorification”

• Dimension of H0(X) is the number of connected compo-

nents of X

• Dimension of H1(X) is the number of essentially different

loops

• Hi defined for any topological space X , using the singular

complex, roughly a simplicial complex with a k-simplex for

every continuous map ∆k → X



Properties of Homology

• Functoriality: For a map of simplicial complexes f :

X → Y , there is an induced linear transformation (matrix)

Hk(f ) : Hk(X) → Hk(Y )

for each k ≥ 0

• Homotopy invariance: For every pair of homotopic

maps f, g : X → Y (i.e. so that there is a map

H : X × [0, 1] → Y

such that H(x, 0) = f (x) and H(x, 1) = g(x)), Hk(f ) =

Hk(g) for all k ≥ 0

• Importance of properties:

– Key tools for computing homology

– Critical for making computations when spaces are not

given in closed form



      Examples

† 

Sn

† 

b0 =b1=1
bi = 0 for i>1

† 

b0 =1 b1 = 2

bi = 0 for i >1

† 

b0 =b2 =1
bi = 0 otherwise

† 

b0 =bn =1
bi = 0 otherwise

† 

b0 =b2 =1, b1= 2
bi = 0 for i>2



Homology and Data

• Question: How to obtain qualitative information about

spaces underlying sets of data?

• Problems:

– Finite sets of points are always discrete, carry no higher

dimensional homology

– Real world data is generally noisy, so don’t have points

exactly on the underlying space

– Homology is an integer valued invariant, can’t recognize

error vs. real phenomena



Rips Complex

• X a set of data in Rn

• ε ≥ 0 a parameter

• R(X , ε) has vertex set X , and {x0, x1, . . . , xk} span a k-

simplex iff d(xi, xj) ≤ ε for all i, j

• For suitable values of ε, R(X , ε) is often homotopy equiv-

alent to the underlying space, when X is obtained by sam-

pling from a space in Rn



However -

• Difficult to know how to choose ε

• In many cases, there is no ε which works



Solution: Persistence

(Edelsbrunner, Letscher, Zomorodian)

• Study all R(X , ε) at once

• Whenever ε < ε′, have a simplicial inclusion

R(X , ε) ↪→ R(X , ε′)

• System of complexes and inclusions carries more informa-

tion than the individual complexes

• The maps induced by the inclusions using functoriality are

the key additional piece of information

• Obtain a persistence vector space, i.e. a family of vector

spaces Vε together with linear transformations Vε → Vε′

whenever ε ≤ ε′



Classification

• Ordinary vector spaces are classified by an integer, the di-

mension

• Persistence vector spaces are classified by a barcode, i.e.

a finite family of intervals on the non-negative real line

• Barcodes are computationally tractable - roughly as com-

putable as a single complex

• By taking Rips complexes, any set of point cloud data gives

a barcode in each dimension k



Measuring Homology

• Homology is difficult to measure, since it is integer valued,

so very sensitive to noise

• Persistence solves this problem

• Long intervals correspond to “geometric” classes, from the

underlying space from which we sample

• Short intervals correspond to noise



We are now in a position to measure connectivity

information, i.e to evaluate it in situations with

noise and with incomplete information

Goal: Utilize these techniques to obtain qualitative informa-

tion about real world data



Lecture II: Applications



The Mumford-Lee-Pedersen Set

• Pictures with digital camera can be viewed as vectors in

high-dimensional vector space (pixel space)

• One coördinate for each pixel, the coördinate is the corre-

sponding gray scale value for that pixel

• Mumford’s first question: If we take many pictures

(with no particular subject in mind), what can be said

statistically about the set of vectors in pixel space obtained

from photos?

• Mumford’s second question: Can anything be said

about the projections of the vectors on coördinates corre-

sponding to pixels in 3× 3 square pixel arrays?

• One is studying a set of vectors in 9-dimensional space



• In The nonlinear statistics of high-contrast patches in

natural images, International Journal of Computer Vision,

Vol. 54, 83-103, 2003, D. Mumford, A. Lee, and K. Peder-

sen construct and study a data set of such pixel patches

• They work from a database of natural images compiled by

J. van Hateren and A. van der Schaaf



• First observation: Most patches will be essentially con-

stant, since there are many solid regions in most images

• Mumford et al remove low contrast patches, i.e. patches

in which all coördinates are within a threshhold of their

mean

• They also normalize the patches so that their mean value

is zero, by subtracting the mean from all coördinates in the

patch, obtaining a vector in 8-dimensional space

• They normalize so that the length of the vectors is 1. Pos-

sible since low-contrast patches have been removed, so the

points lie away from the origin in R8

• Result is a data set M of over 8× 106 points in S7 ⊆ R8



Question: What can be said about the set M? Does it fill

out the 7-sphere?

Initial answer: Yes, in the sense that points of M occur

throughout S7

• However, not all regions in S7 are equally densely popu-

lated by points in M

• Suggests that one should study qualitatively the points of

highest density, suitably defined

• Ultimately, information of this kind should be useful for

thinking about compression of images



Density Estimation

• Highly developed area in statistics, with many interesting

methods

• Our choice is nearest neighbor estimation, but would be

interesting to consider other methods

Definition: For any subset X ⊆ Rn, and any k ≥ 0, define

a function δk : X → [0, +∞) by

δk(x) = distance from x to its k-th nearest neighbor in X

• Large values of δk indicate sparse points, small values

dense points



• Large values of k mean we are measuring density by con-

sidering density of large neighborhoods of x, smaller values

mean we are using smaller neighborhoods

• Density function corresponding to large k should be viewed

as a “smoothed out version” of density function corre-

sponding to smaller values of k

• We have a parametrized family of density measures on our

set X , each one giving potentially different answers

• Statistics has criteria to suggest which values of k are

“best”; we want to use all the measures to get informa-

tion about the data set



What we do

1. Select a value of k

2. Select a percentage threshhold T , and construct the subset

Mk
T of all points which are among the T% densest points

as measured by δk

3. Build the family of Rips complexes on Mk
T

4. Apply certain techniques we have developed (landmark-

ing, witness complexes) to shrink the size of the complexes

and minimize the number of small intervals in the barcode

output

We have carried this out for various values of k and T , and

obtained interesting barcodes and interpretations of these bar-

codes



The case of large k

Applying this methodology for the case of k = 300, with 5×104

points sampled at random from M, and selecting T = 25, we

obtain the following barcode for one-dimensional homology



Interpretation

• Suggests the possibility that the space is a circle

• Plausible explanation: The space of densest points

are obtained by evaluating a non-trivial function in the

two space variables at the nine pixels in the patch

The space is in fact more like and annulus, with the angular

part being the angle of the line between the light and dark

regions, and the radial variable being the distance of that line

from the origin



The case of small k

When we apply the same method to the case k = 15, with

T = 30, and sampling 5× 104 points from Mk
T , we obtain the

following barcode

Note that there are actually five long lines in this picture,

suggesting presence of 5 loops. Result is robust, in that it

recurs after resampling many times



Geometric Explanation

Picture below provides explanation for the observedbarcode

Note that the red and blue circles do not intersect each other



Why does this figure give a barcode with 5

intervals?

Fatten out the picture to put it in the plane

Note the five essential loops, or the five connected regions of

the plane interior to the picture



Interpretation

• Main circle (black one) corresponds to the linear intensity

functions described in the case k = 300

• Red and blue circles correspond to quadratic functions in

one of the coördinate variables





Summary

• Homology detects the preference toward linear intensity

functions using the smoother density estimation (k= 300)

• Using more local density estimation (k = 15), we see

clearly the preference for intensity functions depending on

a single coördinate (vertical or horizontal lines separating

dark from light)

• These are competing preferences

• Interesting to contemplate what happens as T grows. Set

should grow into a 2D object - conjecturally a Klein bottle.

• Analysis should clarify the relationship between three com-

peting preferences: linearity, vertical/horizontal, depen-

dence on a single linear function



Patterns of Application of Topology

• Idealized mathematical model for point cloud data should

be a space equipped with a function, to be used as a Morse

function

• Each form of density estimation gives a discrete version of

such a function

• Connectivity information about excursion sets of the den-

sity function helps describe the distribution of the data in

a qualitative way. One should do Morse theory on

the density function

• Elementary example of this is the location of modes in one-

dimensional distributions. Connected components in the

space of points of high density correspond to the number

of modes



Bimodal Distribution

The regions on the line lying under the blue regions are the

excursion set - it breaks up into two components

In higher dimensions, one needs more sophisticated ways to

describe the distribution qualitatively



Data from Neuroscientists

• Neuroscientists are obtaining increasing amounts of very

interesting data from various portions of the brain

• Two important mechanisms for obtaining data

– Firing patterns of arrays of neurons. This data can now

be obtained by implanting arrays of electrodes in the

relevant portions of the brain

– Optical imaging of various portions of the brain, which

reflects the chemical activity in this region

• Both methods give rise to very high dimensional data, one

because of the number of neurons used, the other since

image data is intrinsically high dimensional

• Data is very noisy



Spaces from Firing Data

• Data can be viewed as an array of point processes, i.e.

collections of firing times for each neuron

• Choose “bins” (i.e. short intervals) in the time direction,

perhaps overlapping

• For each bin β and each neuron ν, let ϕ(β, ν) denote the

number of firings of neuron ν during bin β

• Each bin β now gives rise to a vector
→
xβ= {ϕ(β, ν)}ν

• Creates a data set in RN , where N is the number of neurons

• By using Rips complexes, can create simplicial complexes.

Do they reflect what is happening in the brain in a quali-

tative way?



Ringach’s Experiment

• Experiment performed by Dario Ringach’s group at UCLA

• 20 electrodes implanted in the primary visual cortex of

Macaque monkeys

• Monkeys are shown a family of images determined by two

parameters, one a phase and one an angle



• “Phase space” of all such stimuli is two-dimensional, a torus

• Image are shown sequentially and very quickly, in a way

which approaches every point in this torus

• Question: How can one read off the fact that it is a torus

using only the firing pattern data?

• We try by using the space we have constructed from the

firing pattern data

• First Betti number should be 2, i.e. the first Betti number

of the torus

• Important first reduction: There are many vectors in this

data set where no neuron has significant activity

• To remove these, only study vectors in which one neuron

has activity greater than some threshhold. Analogous to

removing low contrast patches from Mumford et al set



Results

The two intervals indicate the presence of two independent

loops, as in the torus



Remarks

• We did many trials. Mostly we obtained the two intervals,

but occasionally we obtained three. We suspect that it

would be even more consistently two if we had data from

more neurons.

• With less restrictive threshholding, we obtained consis-

tently first Betti numbers of 5 or 6. This seems quite

interesting, it may reflect that we will now be studying

some states which occur in the transition from one image

to another

• Neuroscience seems a very interesting area for potential ap-

plication of topological technique. One often has phenom-

ena or data which one expects are comparable qualitatively,

but will not be so quantitatively



Other Kinds of Qualitative Information

We have shown how one can begin to make sense of the notion

of connectivity information in the context of noise and incom-

plete information. Many kinds of qualitative information are

not directly topological in nature.

Example: Letter Recognition

• The letters “A” and “B” can be distinguished by connec-

tivity information - A has one loop, B has two

• “U” and “V” can be distinguished on the basis of a quali-

tative clue, the presence of a corner point. The cue is not

topological, since U and V are identical topologically

• “C” and “I” are distinguished by the presence of a curved

portion. They are topologically identical



Example: Geometric Primitives

• Geometric objects such as triangles, circles, tetrahedra,

cubes, spheres, cones, etc. are all recognized by qualita-

tive cues

• The cues include presence of corners, edges, cone points,

etc., and the number of each

• Using qualitative cues means one can distinguish between

two such objects even if given in “bad coördinates”, or if

they have been deformed or stretched

Example: Bottles, Glasses and Bowls

• Bottles, glasses, and bowls can be distinguished from each

other by qualitative attributes: presence of a neck, presence

of a crease at the bottom, etc.

• Better to distinguish using attributes than comparing with

a large database of all objects of given kind



Making Non-Topological Attributes Topological

Definition: For any subset X ⊆ Rn, we define the subset

T 0(X) ⊆ X × Sn−1 by

T 0(X) = {(x, ζ)| lim
t→0

d(x + tζ,X)

t
= 0}

T(X), the tangent complex of X , is the closure of T 0(X)

in X × Sn−1

• There is a projection π : T (X) → X , projection on the

X-coördinate.

• T (X)x = π−1(x) is called the fiber over x

• Topologicaly unchanged under smooth deformations of the

ambient Euclidean space



Example

Connectivity information about TX distinguishes these two



2-Dimensional Fibers

Here one dimensional homology is used to distinguish the tan-

gent complexes

Homology of the tangent complex allows us to distinguish on

the basis of presence of hard features, i.e edges, corners, etc.,

in other words, via the presence of singular points



Soft features

• Many qualitative features do not involve either connectiv-

ity information or the presence of singular points, but are

“soft”

• The letter “C” and the letter “I” are distinguished by the

soft feature that one is curved and the other is not

• Bottles and glasses are distinguished from each other by

the presence of a neck in the bottle. This is a soft feature,

they both have the same singular points

• Strategy: Impose filtration on the tangent complex based

on curvature, and use this filtered space to create persistent

homology. Barcode is now a signature for the qualitative

aspects of the space



Filtered tangent complex

Let X ⊆ Rn be a hypersurface. For each point (x, ζ) ⊆ T (X),

define ρ(x, ζ) to be the radius of the osculating circle to X

within the plane spanned by ζ and the normal vector to X . ρ

may be infinite.

Definition: For a hypersurface X ⊆ Rn and δ ≥ 0, we

define a subspace Tδ(X) by

Tδ(X) = {(x, ζ)| 1

ρ(x, ζ)
≤ δ}

The barcodes for this filtered space often distinguish well be-

tween different kinds of shapes



Examples



Further Examples





Barcodes for Filtered Tangent Complex





Metric on the Space of Barcodes

• There is a metric on the space of barcodes

• The distance between a pair of intervals is the measure of

their “symmetric difference”

• A “partial matching” between a pair of barcodes is a one-

one and onto correspondence between a collection of inter-

vals in one code with a collection in the other

• For each partial matching, we compute a number D, which

is the sum of the distances between each pair of matched

intervals added to the sum of the lengths of all matched

intervals

• Metric is now the minimum value of D over all possible

partial matchings




