1. Ramsey theory and Banach spaces, Fields Institute, Fall 2002. Problem Set #3 October 21, 2002

Due date is November 4, 2002.

Exercise 1. Assume S is a compact right-topological semigroup.

- (1) If p is an idempotent in S then there is a minimal idempotent $q \leq p$.
- (2) Assume S_1 is a closed subsemigroup of S such that $I = S \setminus S_1$ is an ideal, and p is a minimal idempotent in S_1 . Assume q is an idempotent in I. Then for every continuous homomorphism $f: S \to S_1$ such that $f \upharpoonright S_1$ is an identity we have f(q) = p.

(Note: An example for the objects as in the previous exercise is $S = \bigcup_{i=1}^{k} \text{FIN}^{i}$, $S_1 = \bigcup_{i=1}^{k-1} \text{FIN}^{i}$, and $I = \text{FIN}^{k}$. And the proof of (2) can be modified to show that T(q) = p, if T is the tetris operation. Hence this shows that the idempotents p_k in FIN^k can be chosen to be minimal, as I have originally stated.)

Exercise 2. Prove that for $A \subseteq \mathbb{N}$ the following are equivalent:

- (1) For every partition of \mathbb{N} into finitely many pieces there is an infinite subset B of A such that FS(B) is included in a single piece.
- (2) There is $p \in \beta \mathbb{N}$ such that p + p = p.

(Notation: FS(A) stands for all finite sums of distinct elements of A.)

An ultrafilter p on FIN_k is *cofinite* if for every $m \in \mathbb{N}$ the set $\{s \in FIN_k : \operatorname{supp}(s) \cap m = \emptyset\}$ belongs to p.

Exercise 3. Prove that the cofinite ultrafilters on FIN_k form a closed subsemigroup of βFIN_k .

Let Σ be a finite alphabet and let S be the semigroup of words over Σ . In other words, S is the free semigroup with Σ as the set of generators. Let v be a variable which is not a member of Σ . A word over $\Sigma \cup \{v\}$ is a variable word if v occurs in it. Let S(v) be the semigroup of all variable words. If $x \in S(v)$ and $a \in \Sigma$, let x(a) be the word obtained by replacing all occurrences of v in x by a.

Theorem 4 (Hales–Jewett). If $S = \bigcup_{i=1}^{k} Y_i$, then there is a variable word x and $i \leq k$ such that $\{x(a) : a \in \Sigma\} \subseteq Y_i$.

Exercise 5. Prove Hales–Jewett theorem.¹

There is also an infinite version of Hales–Jewett theorem, that combines it with Hindman's theorem for the free semigroup.

Theorem 6. If $S = \bigcup_{i=1}^{k} Y_i$, then there is a sequence of variable words $A = \langle w_i : i \in \mathbb{N} \rangle$ and $j \leq k$ such that the subspace generated by A is included in Y_j . The space generated by A is the family (wu is a concatenation of words w and u)

 $\{w_{n_1}(a_1)w_{n_2}(a_2)\dots w_{n_l}(a_l): n_1 < n_2 < \dots < n_l, a_i \in \Sigma\}.$

If your solution to Exercise 5 looks as I believe it should, it should easily give Theorem 6 as well. One can strengthen this theorem by considering a partition of S(v) as well, and moreover allow more than one variable. There is also a joint generalization of Theorem 6 and Gowers' theorem.

Theorem 7 (van der Waerden). If $\mathbb{N} = \bigcup_{i=1}^{k} Y_i$, then there is i such that Y_i contains an arbitrarily long arithmetic progression.

Exercise 8. (1) Find a partition of \mathbb{N} into two pieces such that neither of the pieces contains an infinite arithmetic progression.

(2) Prove van der Waerden's theorem.²³⁴

E-mail address: ifarah@fields.utoronto.ca *URL*: http://www.math.yorku.ca/~farah

¹Hint: Use Exercise 1 and the machinery that we have developed in proving Hindman's and Gowers' theorems.

²Hint 1: Use Hales-Jewett theorem.

³Hint 2: To get an arithmetic progression of length 10, let $\Sigma = \{0, 1, \dots, 9\}$.

 $^{^{4}}$ Note: There is also a very nice direct proof using the machinery that we have developed. In a sense, proving van der Waeerden's theorem using Hales–Jewett's theorem is shooting a fly with a cannon, but our main goal was Gowers' theorem and the machinery developed to prove it is more suitable for proving Hales–Jewett then for proving van der Waerden.