Semi-continuity of Hochschild Cohomology and Mesh Algebras without Outer Derivations

Ragnar-Olaf BuchweitzShiping Liu (Speaker)Department of MathematicsMathematics and Computer ScienceUniversity of TorontoUniversité de SherbrookeToronto, OntarioSherbrooke, QuebecCanada M5S 3G3Canada J1K 2R1Emails: ragnar@utsc.utoronto.cashiping@dmi.usherb.ca

Time requested: <u>30 minutes</u>

Let R be a commutative noetherian ring with identity, and $A = \bigoplus_{i\geq 0} A_i$ a graded R-algebra satisfying the following:

(1) The *R*-module A_0 is free having a basis *U* that is a complete set of pairwise orthogonal idempotents of *A*.

(2) The *R*-module A_1 is finitely generated projective such that $A \cong T/I$ with *T* the tensor algebra of A_1 over A_0 and *I* a finitely generated homogeneous ideal.

An *R*-derivation $\delta : A \to A$ is of *degree zero* if $\delta(A_i) \subseteq A_i$ for all $i \ge 0$; and *U*-normalzed if $\delta(e) = 0$ for all $e \in U$. Let $\operatorname{Der}_R^U(A)_0$ denote the *R*-module of *U*- normalized derivations of degree zero and $\operatorname{Inn}_R^U(A)_0$ that of *U*-normalized inner derivations of degree zero. Then the first Hochschild cohomology group $\operatorname{HH}_R^1(A)$ of *A* over *R* contains as a submodule $\operatorname{HH}_R^1(A)_0 = \operatorname{Der}_R^U(A)_0/\operatorname{Inn}_R^U(A)_0$.

Using Grothendieck's semicontinuity theorem for homological functors, we have the following:

THEOREM 1. Let $A = \bigoplus_{i\geq 0} A_i \cong T/I$ be as above such that A_i is finitely generated projective for each degree *i* in which generators of *I* occur. Then

 $p \mapsto \dim_{k(p)} \operatorname{HH}^{1}_{k(p)}(k(p) \otimes_{R} A)_{0}$

is upper semicontinuous on $\operatorname{Spec}(R)$, where k(p) denotes the residue field of the localization R_p of R at p.

Let Γ be a finite translation quiver without multiple arrows or loops. Say that Γ is *simply connected* if it contains no oriented cycle and its orbit graph is a tree. Denote by $R(\Gamma)$ the mesh algebra of Γ over R. As an application of the preceding result, we have the following:

THEOREM 2. If R is a noetherian domain, then the following are equivalent: (1) $\operatorname{HH}^1(R(\Gamma)) = 0.$

(2) Γ is simply connected.

(3) $\operatorname{HH}^1(R(\Delta)) = 0$ for every connected convex translation subquiver Δ of Γ .