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S. ADJERID AND T. C. MASSEY
Virginia Polytechnic Institute and State University

A Posteriori Error Analysis for Multi- Dimensional Hyperbolic Problems

The discontinuous Galerkin method (DGM) is an appealing approach to address prob-
lems having discontinuities, such as those that arise in hyperbolic conservation laws. The
DGM uses a discontinuous finite element basis which simplifies hp adaptivity and leads to
a simple communication pattern across faces that makes it useful for parallel computation.
In order for the DGM to be useful in an adaptive setting, techniques for estimating the
discretization errors should be available both to guide adaptive enrichment and to provide
a stopping criteria for the solution process. We will show that the p−degree DG finite
element solution for hyperbolic problems exhibits superconvergence at the roots of Radau
polynomials of degree p + 1 with the fixed endpoints selected at the downwind boundary
of each quadrilateral element. We also show that the DG solution has strong supercon-
vergence on average at the outflow boundary. We use this superconvergence results to
construct asymptotically exact a posteriori error estimates for first-order hyperbolic par-
tial differential equations. Finally, we present numerical results for several computational
examples with both continuous and discontinuous solutions that show the efficiency of
our a posteriori error estimator.

A .AFIF, G. KUNERT, Z. MGHAZLI, S. NICAISE
Université Cadi Ayyad, Universta̋t Chemnitz, Université Ibn Tofail , Univer-
sité de Valencienne et du Hainaut-Cambrésis

A posteriori error estimation for anisotropique finite volume meshs

In this work we develop a discretization using Finite Volume (FV) Method of vertex-
centered type, for the numerical solution of a convection-diffusion equation on unstruc-
tured grids.Because such problem yield a solution which exhibits little variation in one
direction, but much change in an other direction (the solution is called anisotropic), it is
natural to use a small mesh size in the direction of the rapid variation of the solution and
a larger mesh size in the direction of the little variation (the mesh is called anisotropic).

The aim of this work is to develop , firstly a FV scheme to approximate a convection-
diffusion equation which is anisotropic and convergent, and secondly an a posteriori error
estimate efficient and reliable for such scheme, in order to introduce an auto-adaptive
refinement. Some numerical results will be presented to confirm the theory.

We consider the problem

−ε∆u + q · ∇u + cu = f in Ω ⊂ IRd (1)

u = 0 on Γ := ∂Ω (2)

where q, c and f are regular functions such that q = (q1(x), ..., qd(x)) ≥ (1, ..., 1) ∀x ∈
Ω, 0 < ε � 1 and c + 1

2
divq ≥ C0 ≥ 0 in Ω.
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M. AIFFA
Texas A&M University

A geometrical approach to mesh : smoothing

It is well known that poorly shaped elements in a finite element mesh affect both the
accuracy of the finite element solution and the stability of the process by which it is
computed. Adaptive mesh refinement is one cause for the generation of highly distorted
elements. In this talk we will go over some of the mesh improvement techniques such
as edge swapping, node insertion, node deletion etc ... We will concentrate on node
relocation, also known as mesh smoothing, where each mesh vertex v is recursively moved
to a target location that minimizes a given mesh quality measure. The target location
vt is expressed as a solution to a local optimization problem that is usually solved using
a line search type approach. We will describe an alternative way for solving the local
optimization problem by characterizing the set of optimal locations in terms of the level
sets associated with the shape quality measure in use. Modulo some assumptions on the
shape quality measure, satisfied by most one in use, we completely characterize the set of
optimal locations. As a consequence we are able to write explicit formulas for the optimal
locations, provided the level sets are simple enough such as circles in 2D and spheres in
3D. Finally we will introduce a new shape measure for tetrahedra.

JÖRN BEHRENS*, ARMIN ISKE, MARTIN KÄSER
Technische Universität München

An adaptive mesh-free method of backward characteristics for advection
equations

A mesh-free method for solving linear and nonlinear multi-dimensional transport problems
is proposed. This method is essentially a combination of an adaptive semi-Lagrangian
method with a mesh-free radial basis function interpolation on scattered data.

We discuss customized strategies for node placement for achieving locally optimally
spaced node clusters for the approximation of PDEs. A special a posteriori error in-
dicator is developed, in order to refine/coarsen the nodes according to approximation
requirements. Some remarks on the stability of the proposed method are made.

Numerical examples in two space dimensions demonstrate the effectiveness of the mesh-
free method of backward characteristics. A model problem and a near-realistic problem
for linear transport are treated yielding accurate results.

The new method proves to be applicable to nonlinear equations. Examples of Burger’s
equation and Buckley-Leverret equation in two dimensions are given. An artificial viscos-
ity ansatz is chosen to model shock propagation with the characteristics based method.
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ALEXEI BESPALOV* AND NORBERT HEUER
Russian Academy of Sciences and Universidad de Concepción

An a-posteriori error estimate for problems with strong singularities

We present an a-posteriori error estimator for a finite element scheme applied to an elliptic
boundary value problem with strong point singularities. The singularities caused by
singular data are such that the problem is not well-posed in H1, but needs special weighted
spaces for its variational formulation, see [1]. The corresponding finite element scheme
uses standard piecewise polynomials but weighted with appropriate singular functions.
The weight functions depend on the problem and the weighted energy space, see [2].

We define an a-posteriori error estimator for the special finite element scheme using a
two-level hierarchical decomposition of the ansatz space. Our analysis follows Bank and
Smith [3]. Main ingredient is a saturation assumption and a strengthened Cauchy-Schwarz
inequality for the two-level decomposition in the weighted Sobolev spaces.
References

1. V.A. Rukavishnikov, On differentiability properties of an Rν-generalized solution of
the Dirichlet problem. Dokl. Acad. Nauk SSSR, 309 (1989), no. 6, pp. 1318–1320;
English transl. in Soviet Math. Dokl., 40 (1990), no. 3.

2. V.A. Rukavishnikov and H.I. Rukavishnikova, The finite element method for the
third boundary value problem with strong singularity of solution. In: ENUMATH
97. Proceedings of the Second European Conference on Numerical Mathematics and
Advanced Applications. World Scientific, Singapore, 1998, pp. 540– 548.

3. R.E. Bank and R.K. Smith, A posteriori error estimates based on hierarchical bases.
SIAM J. Numer. Anal., 30 (1993), no. 4, pp. 921- -935.

J. DE FRUTOS* & J. NOVO
Universidad de Valladolid

Postprocessing the p version of finite element method and adaptivity in the
numerical solution of nonlinear parabolic equations of dissipative type

In recent years spectral methods for the numerical solution of nonlinear parabolic equa-
tions have received increasingly attention. The p and h-p versions of finite element method
allow to treat complex geometries with spectral accuracy. Spectral-type approximations
have been proven to be suitable for parabolic equations due to their regularization prop-
erties. In this talk we focus on the p- version of the finite element method.

The theory of a posteriori error estimation for elliptic problems has been extensively
treated in the literature. For parabolic equations much fewer results are available, see
[1]. In [1], [2], it is proven that an a posteriori error estimator for evolutionary problems
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can be obtained by using any elliptic a posteriori error estimator. In these papers, the
analysis is done in a special time-weighted energy norm in the space-time cylinder. In
the present talk we propose a similar procedure that can be used for nonlinear dissipative
equations. In our approach the error estimation is done at fixed times by means of only
one elliptic problem with right hand side the residual of the numerical solution with time
frozen. Furthermore, the main advantage of the procedure we propose is that it gives
a hierarchy of corrections to the numerical solution that allow to improve the spatial
accuracy (if it is needed) without increasing the computational cost of the overall time
integration, including the cost of error estimation.

The results are based in the theory of the so called postprocessed Galerkin methods [3],
[4]. Postprocessed methods have been used in a different context to get improved solutions
of dissipative equations. The main hypothesis needed is that the solutions of the equations
are smooth in time, a property that is shared for most dissipative partial differential
equations including, reaction-convection-diffusion equations, Navier-Stokes equations, etc.

The computation of the a posteriori error estimator, and a fortiori the correction, is
far less expensive than the computation of the numerical solution and can be carried
out at every time when it is needed. The results can be used as a basis for an adaptive
numerical procedure that controls adaptive enrichment through h or p version of finite
element method. Some numerical results are presented.

References

[1] I. Babuška, M. Feistauer & P. Š óın, On one approach to a posteriori error estimates
for evolution problems solved by the method of lines, Numer. Math., 89 (2001), pp.
225-256.

[2] I. Babus̆ka & S. Ohnimus, A posteriori error estimation for the semidiscrete finite
element method of parabolic differential equations, Comput. Methods Appl. Mech.
Engrg., 190 (2001), pp. 4691-4712.

[3] J. de Frutos & J. Novo, A postprocess based improvement of the spectral element
method, Appl. Numer. Math., 33 (2000), pp. 67-88.

[4] J. de Frutos & J. Novo, A spectral element method for the Navier-Stokes equations
with improved accuracy, SIAM J. Numer. Anal., 38 (2000), pp. 799-819.
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E. G. FILIPPENKO AND V. S. ZYUZIN
Saratov State University

A Posteriori Error Estimation of Gursa Problem

The method of finding coefficients of Taylor series is proposed for the solution of partial
differential equations (PDEs) with initial conditions. It is used to find interval solution
of Gursa problem

Uxy + a(x, y)Ux + b(x, y)Uy + c(x, y)U = f(x, y) (1)

(a, b, c - are analytical functions in the given field) with following conditions

U(x0, y) = ϕ1(y), y0 ≤ y ≤ b,

U(x, y0) = ϕ2(x), x0 ≤ x ≤ a, (2)

and besides ϕ1(y0) = ϕ2(x0).
Functions ϕ1(y) and ϕ2(x) have continuous derivatives of the first order.
The same method of finding coefficients of Taylor series is developed for the solution

of homogeneous differential equations system (HDE) [1].
The Taylor series function f(x, y) in the point (x0, y0) is the following:

f(x, y) =
∞
∑

i=0

∞
∑

j=0

(f)ij(x − x0)
i(y − y0)

j,

where

(f)ij :=
1

i!j!

∂i+jf

∂xi∂yj
.

The following formulas are used to find coefficients of Taylor series

(fx)ij = (i + 1)(f)i+1,j; (fxy)ij = (i + 1)(j + 1)(f)i+1,j+1;

(fxx)ij = (i + 1)(i + 2)(f)i+2,j; (f ± g)ij = (f)ij + (g)ij;

(fg)ij =
i
∑

k=0

j
∑

l=0

(f)kl(g)i−k,j−l.

The recurrence formula is as follows:

(Uxy)ij = −(aUx)ij − (bUy)ij − (cU)ij + (f)ij. (3)

The remaining member is calculated according to the formula:

Rn+1 =
1

(n + 1)!
(

∂

∂x
h1 +

∂

∂y
h2)

n+1U(τ1, τ2),
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where
x0 ≤ τ1 ≤ x0 + h1,

y0 ≤ τ2 ≤ y0 + h2.

The polynomial to the n power is found and the remaining member of the (n + 1)
order is evaluated. Using interval methods get guaranteed a posteriori error estimation
including error calculation for the approximate problem solution (1)(2).

Reference
[1] Moore R.E. Interval analysis.-Englewood Cliffs.N.J.: Prentice-Hall.1966.

JOSEPH E. FLAHERTY AND LILIA KRIVODONOVA
Rensselaer Polytechnic Institute

Error Estimation and Limiting Techniques for Discontinuous Galerkin
Method

A computationally efficient error estimator is needed to guide adaptive enrichment and to
provide a measure of solution accuracy for any numerical method. Efficiency is of special
importance for hyperbolic problems where solution features evolve in space and time. We
develop an inexpensive a posteriori error estimation technique based on superconvergence.
The superconvergence phenomena is described for one- and multi-dimensional problems
and for structured and unstructured meshes. We prove that the discretization error of
pth-order approximation converges at the downwind boundaries of elements as O(h2p+1)
pointwise for one-dimensional problems and on average for higher dimensions. We further
prove that the global error converges at O(hp+2) rate at the Radau points of degree
p + 1 for one-dimensional problems. In higher dimensions, point-wise superconvergence
as well as Radau polynomials seize to exist. However, we demonstrate that average errors
converge at a faster O(hp+2) rate over lines (in two dimensions) parallel to the downwind
boundary. The estimator requires O(Npk−1) operations to compute relative to O(Npk)
solution complexity on a mesh of N elements in k dimensions for one time step.

High-order accuracy is desirable, but difficult to achieve for hyperbolic conservation
laws with discontinuous solutions. High-order approximations of such problems develop
spurious oscillations near discontinuities. One possible solution is to use a limiter - a
nonlinear procedure that suppresses oscillations. However, existing limiters reduce the
order of accuracy near smooth extrema. By constructing an indicator that distinguishes
smooth and “rough” areas, we restrict the use of the limiter to the elements containing
discontinuities. As a result, we obtain sharp resolution of shocks as well as achieve the
theoretical high-order rate of convergence in smooth regions.
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A. FOURNIER* AND S. SUMETKIJAKAN
University of Maryland

G. BEYLKIN AND V. CHERUVU
University of Colorado

Multiresolution Adaptive Spectral Elements:Application to shallow-water
flow on the sphere

We present a high-order, adaptive numerical method for numerically solving advection-
diffusion PDEs, and demonstrate the advantage of this method for fluid dynamics prob-
lems, especially that generate quasi-singular or coherent structures.

There are four aspects of the method that we will elucidate. First, the spatial discretiza-
tion employs piecewise-polynomial spaces similar to the traditional spectral-element method;
however we use orthogonal multiresolution analysis (MRA) comprising many nonconform-
ing elements of various scales. This MRA is constructed using multiwavelets, which are
orthonormal basis functions whose span efficiently describes the extra “detail” information
gained in refining some of the spectral elements (Alpert et al. 1999).

Second, the adaptivity criterion for a set of elements is the norm of the projection onto
the corresponding multiwavelets. Using this simple criterion, the algorithm refines and
coarsens the representation of steepening or translating structures. Our criterion replaces
more traditional criteria, based on local gradients or local spectra.

Third, we take advantage of the spatial discretization, to improve the time-stepping
scheme. We use the “exact linear part” scheme (Beylkin et al. 1998), which amounts to
using scaling and squaring to compute the exponential propagator due to the diffusive
linear operator. This adaptive operator exponentiation is made feasible by our spatial
discretization. It significantly improves convergence for high Reynolds numbers and large
time steps.

Finally, we use block-sparse data structures to achieve efficiency.
We will demonstrate these features using the standard shallow-water test suite of

Williamson et al. (1992).

VASILE CATRINEL GRADINARU
Universität Tübingen

Mixed Finite Elements on Sparse Grids

Sparse grids provide efficient approximations of smooth functions. More precisely, they
are a device to describe a function up to a prescribed accuracy with very few degrees of
freedom. If conventional Sobolev-norms are used to measure accuracy, sparse grids can
be shown to be optimal or near optimal. A tremendous reduction of the amount of data
is achieved compared to standard schemes of multivariate approximations that rely on



)25�5(6($5&+�,1�0$7+(0$7,&$/�6&,(1&(6
7+(�),(/'6�,167,787(

ABSTRACTS 1.2

low-order polynomials. It turns out that sparse grids are a priori adaptive grids. The
crucial idea is to drop certain insignificant contributions of hierarchical representations of
functions

So far, sparse grids schemes have been based on linear and higher order Lagrange
polynomials for H1 conforming finite elements. We generalize the discretization on sparse
grids to discrete differential forms (Whitney forms). The extension to general l-forms in
d dimensions includes mixed elements for and can be used for the Galerkin discretization
of mixed boundary value problems.

The tensor product structure and the hierarchical multilevel principle provide the hi-
erarchical decomposition of the Whitney spaces. We define the sparse grid interpolation
operator relying on the hierarchical basis. The interpolation estimates generalize the
known results for Lagrangian finite elements. Approximate interpolation is needed for
the Galerkin method for boundary value problems on sparse grids. The combination
technique and a two point quadrature rule ensure that similar error estimate as for the
exact interpolation hold.

Some inherent limitations of the proposed method are given by the fact that only
tensor product domains have been successfully investigated. Further, no techniques for
boundary value problems with variable coefficients are available yet. However, we will
discuss adaptively refined sparse grids, too.

S. HAMDI,* W. H. ENRIGHT, J.J. GOTTLIEB AND W.E. SCHIESSER
The Fields Institute, University of Toronto, University of Toronto and Lehigh
University

Accurate Interpolations for Adaptive Method of Lines

The problem addressed in this paper is the accurate interpolation of numerical solutions
of high order partial differential equations (PDE)s. This problem arises frequently, for
example, with the static adaptive method of lines where a numerical solutions from a
previous grid needs to be mapped accurately onto a new adapted grid. In most previ-
ous studies the mapping is performed using cubic splines interpolation but this can be
insufficiently accurate for high order (PDE)s such as the Korteweg-de Vries equations. In
this paper, we will consider three standard interpolating algorithms (based on the use of
cubic splines, quintic splines and quintic B-splines) and two non-standard interpolating
algorithms based on Fornberg interpolation and on almost collocation.

Accurate interpolation of a numerical solution is also frequently used in the assess-
ment of the performance of the solution method. In such cases, accurate evaluation of
the phase and amplitude errors and accurate integration of the invariants of motion of
solitary waves are used as measures of the reliability of the underlying solution method
of the PDE. Numerical integration using adaptive quadrature routines is not applica-
ble in this case because it relies on the ability to automatically choose the location of
the abscissas. The basic approach investigated in this study uses the exact integration
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of the interpolants. Several alternatives based on different choices for the interpolation
technique will be investigated and applied to problems arising from several invariants of
motion for the conservation of mass, momentum and energy for the Korteweg-de Vries
Burgers equations. Each of the integration algorithms is implemented in Fortran and
MAPLE and is available from the authors. Several numerical examples are presented to
illustrate important features of the propagation and interactions of solitary waves of the
Korteweg-de Vries Burgers equations, the breakup of a Gaussian pulse into solitary waves,
and the development of an undular bore.

NORBERT HEUER
Universidad de Concepción

Error indicators based on two-level decompositions for the BEM

We present error indicators for the p- and hp-version of the boundary element method
for elliptic boundary value problems in two and three dimensions. Our indicators are
based on local enrichments of the ansatz spaces and decompositions thereof. Key points
in the analysis of reliability are a saturation assumption and stability of the subspace
decompositions. For efficiency, on the other hand, just stability of the decompositions is
needed. We present various types of decompositions, in two and three space dimensions,
and prove stability.

For model problems, the performance of corresponding algorithms is shown and the
influence of saturation on reliability is indicated.

HUNG-TSAI HUANG AND ZI-CAI LI*

The Adini’s Elements for the Neumann Problems of Poisson’s Equation

Co-author Ningnig Yan, Institute of System Science.
In this paper, we report some new discoveries of Adini’s elements for the Neumann

problems of Poisson’s equation in error estimates, stability analysis and global supercon-
vergence. It is well known that the optimal convergence rate ‖u−uh‖1,S = O(h3)|u|4,S can
be obtained, where uh and u are the Adini’s solution and the true solution respectively.
In this paper, for all kinds of boundary conditions of Poisson’s equations, the superclose
‖uA

I − uh‖1,S = O(h3.5)|u|5,S can be obtained for uniform rectangles �ij, where uA
I is the

Adini’s interpolation of the true solution u. Moreover, for the Neumann problems of Pois-
son’s equation, new treatments adding the explicit natural constraints (un)ij = gij on ∂S

are proposed to yield the Adini’s solution u∗
h having superclose ‖uA

I −u∗
h‖1,S = O(h4)|u|5,S.

Hence, the global superconvergence ‖u − Π5
pu

∗
h‖1,S = O(h4)|u|5,S can be achieved, where

Π5
pu

∗
h is an a posteriori interpolant of polynomials with order five based on the obtained

solution u∗
h. New basic estimates of errors are derived for Adini’s elements, and new proofs

are provided to derive the optimal rate O(h−2) of condition number for the associated
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matrix resulting from Adini’s elements. Numerical experiments in this paper are also
provided to verify perfectly the superconvergences, O(h3.5) and O(h4), and the optimal
condition number O(h−2).

CHRISTIANE JABLONOWSKI
University of Michigan

A View of the Sphere: Adaptive Methods in Climate and Weather
Modeling

Climate and weather models are amongst the many fluid dynamics applications that are
characterized by multi-scale interactions. But although today’s atmospheric general cir-
culation models (GCMs), and in particular weather prediction codes, are already capable
of uniformly resolving horizontal scales of order 20km, the motions of interest span many
more scales than those captured in a fixed resolution model run.

Dynamically adaptive grid approaches have long been used in aerospace engineering,
astrophysics, aeronautical and other computational fluid dynamics problems. In atmo-
spheric science they were first applied approximately twelve years ago and mostly re-
stricted to Cartesian coordinate systems. However, modeling weather phenomena on a
global scale requires spherical coordinates and this new research effort aims at adaptive
schemes for PDEs on the sphere.

The talk will give a design overview of an adaptive GCM that is based on NASA’s next
generation global climate model. This conservative model in flux form uses a local finite
volume discretization that is third order accurate when applying the piecewise parabolic
method (PPM). The main building block of the adaptations is a block-structured data
structure that allows high performance computations with minimal changes to the pre-
existing PDE solvers. Blocks are refined or coarsened by a factor of two and neighboring
blocks can only differ by one refinement level. This guarantees accurate influx and out-
flow conditions at the interface boundaries, but on the other hand can lead to cascading
refinement requests. Therefore, questions concerning the optimal refinement criteria that
are capable of capturing the atmospheric ‘features of interest’ must be discussed. Further-
more, the challenging aspects of grid adaptations on parallel computers will be addressed.

PETER K. JIMACK
University of Leeds

An Adaptive Arbitrary Lagrangian-Eulerian (ALE) Approach for
Time-Dependent Free-Surface Flow Problems in 2 and 3 Dimensions

This talk will include joint work with a number of colleagues in the Schools of Computing,
Mathematics and Mechanical Engineering at the University of Leeds: P.H. Gaskell, M.A.
Kelmanson, R.C. Peterson, J.L. Summers, H.M. Thompson, M.A. Walkley and M.C.T.
Wilson.
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We describe a very general ALE algorithm, using a boundary- conforming finite-
element method, for the solution of surface-tension-dominated free-surface flow problems
in two and three dimensions. This algorithm combines both mesh movement, driven by
the motion of the free surface, with discrete remeshing, if and when the quality of the
mesh deteriorates below certain quantified thresholds. The main strength of the adap-
tive approach that has been adopted is that it allows the shape of the free-surface to
change significantly during the course of a simulation without any a priori knowledge of
how the geometry will evolve. Furthermore, the use of adaptivity ensures that the free-
surface may be represented to a high accuracy and the ALE approach means that the
computational domain is restricted to the region occupied by the fluid at any given time.

Our implementation using triangles in two dimensions, allowing both Cartesian and
axisymmetric flow simulations, is well developed, whilst the three-dimensional implemen-
tation based upon tetrahedra is still ongoing. Details of the adaptive algorithms and the
underlying flow solvers will be presented. In particular we will describe how the position
of the free-surface is updated at each time step and then how the positions of the rest of
the nodes in the mesh are moved, and the finite element equations updated, to be consis-
tent with this. The mechanisms for triggering discrete remeshing will also be discussed,
as will the remeshing algorithms themselves and the data structures required for efficient
interpolation between grids after discrete remeshing has taken place.

Example simulations that will be described include the shedding of a curtain of fluid
from a rotating roller, the formation of an axisymmetric drop, the breaking of a liquid
bridge as two wet surfaces are pulled apart, and the viscous sintering of two cylinders
or two spherical droplets of fluid. In each of these cases the geometry of the solution
domain changes substantially during the course of the simulation and so the use of mesh
adaptivity is essential for an efficient computation to be achieved.

SERPIL KOCABIYIK
Memorial University of Newfoundland

A Finite Difference Method for the Simulation of Flow Around

A Circular Cylinder Subject to Forced Oscillations

The problem of unsteady, laminar flow past a circular cylinder which performs recti-
linear oscillations at an arbitrary angle η with respect to the oncoming uniform flow is
investigated numerically for the first time. Not only do these oscillations have practical
consequences relating to the design of engineering structures, but from a fundamental
standpoint the forced oscillations of cylinders at an arbitrary angle with respect to the
oncoming uniform flow form an important and relatively unexplored class of oscillatory
flows. The flow is incompressible and two-dimensional, and the cylinder oscillations are
harmonic.
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The investigation is based on the solution of unsteady Navier-Stokes equations together
with the mass conservation equation in the case of viscous fluids. The method of solution
is based on the use of truncated Fourier series representations for the stream function
and vorticity in the angular polar coordinate. A non-inertial coordinate transformation is
used so that the grid mesh remains fixed relative to the accelerating cylinder. The Navier-
Stokes equations are reduced to ordinary differential equations in the spatial variable
and these sets of equations are solved by using finite difference methods, but with the
boundary vorticity calculated using integral conditions rather than local finite-difference
approximations.

The cylinder motion starts suddenly from rest at time t = 0. Immediately following the
start of the cylinder motion, a very thin boundary-layer develops over the cylinder surface
and grows with time. Accordingly, we divide the solution time into two distinct zones.
First zone begins following the start of fluid motion and continues until the boundary-
layer becomes thick enough to use physical coordinates. In this zone, we use boundary-
layer coordinates, which are appropriate to the flow field structure, in order to obtain an
accurate numerical solution. The spacing of the grid points used in this zone are such that
they are spaced closer together near the surface and further apart at large distances. In
addition, the adopted grid mesh continually grows in time to properly accommodate the
vortex shedding process and boundary-layer development of the flow. The second zone
starts following the first one and continues until the termination of calculations. The
change from boundary layer coordinates to physical coordinates is made when boundary
layer thickens which also ensures that the same grid points can be used in boundary-
layer and actual physical space. In this way the numerical solution procedure can be
started with good accuracy and continued with comparable accuracy until a periodic
vortex-shedding regime is established.

The numerical method is verified for small times by comparison with the analytical
results of a perturbation series solution and an excellent agreement is found. The results
of this study are consistent with previous experimental predictions.

A. M. LAKHANY AND J. R. WHITEMAN
Algorithmics Inc.

A Posteriori Error Estimation Using Superconvergent Recovered Gradients

During this talk I shall be mainly discussing some of the post processing methods for the
gradient of the finite element approximation that render a superconvergent approximation
to the gradient of the weak solution for a variety of problems. I shall follow the historical
development of this field and emphasize how the evolution of this field has been influenced
by the need for a posteriori error estmates that are based on superconvergent gradient
recovery. Today, the selling point for gradient recovery techniques is no longer based on
obtaining a superconvergent gradient in order to substitute the gradient of finite element
approximation. In fact the focus of research has been on the use of the recovered gradients
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to provide a posteriori error estimation. In this context I shall discuss two types of
estimators where superconvergent gradients can be employed, namely,

1. the Zienkiewicz-Zhu type error estimators and
2. estimators based on interpolation error bounds.

Because of the superconvergence property, these estimators can be proved to be asymp-
totically exact.

This talk will follow the natural course of development in superconvergence theory.
I shall start with some earlier results in this field and demonstrate how the subsequent
results were mostly dedicated to addressing undesirable assumptions required by the for-
mer results. Examples include the high regularity of the weak solution, the simplicity of
the problem and the regularity of the mesh. I shall focus primarily on how the regularity
requirements on the mesh were relaxed as this seems essential under adaptive refinement
of the finite element meshes.

I shall finish my talk by mentioning some newer results in this field and current research
in which I am engaged.

SHENGTAI LI*, LINDA R. PETZOLD AND JAMES M. HYMAN
LANL, University of California Santa Barbara and University of California
Santa Barbara

Implicit Implementation and Sensitivity Analysis for PDEs with Adaptive
Mesh Refinement

A method of lines (MOL) approach was employed to solve the time-dependent PDE
on an adaptive mesh. First the PDE system is semi-discretized in space into a DAE
system. Then the DAE system is integrated by a variable order variable stepsize backward
differention formula (BDF) method. The structured adaptive mesh refinement (SAMR)
method was used to achieve the adaptivity when the mesh varies with time.

Most implementations of SAMR have used an explicit time integration, and refined
time as well as space by taking local smaller time steps for finer grids. The explicit time
integration is not efficient when solving some parabolic type PDEs or when solving for the
solutions of near steady-state equations. In our implementation, SAMR was combined
with an implicit time integration solver DASPK3.0, which also has the sensitivity analysis
capability. An efficient transformation between the DASPK3.0 flat structure and AMR
hierarchical data structure was designed and applied. To improve the computational effi-
ciency, we used a warm restart technique so that the integration is continued with almost
the same step size and order after remeshing as would have been used had the remeshing
not taken place. Even with the warm restart, the overhead of the mesh adaptation is
relatively high. The most significant cost is evaluation of the Jacobian. To further reduce
the overhead of the mesh adaptation, we perform the mesh refinement after a number of
time steps instead of at every time step, and replace the old mesh with the new adaptive
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one only when the variance is big enough. An automatic differentiation tool is also used
to reduce the cost of the Jacobian evaluation.

We have applied two sensitivity analysis approaches to our adaptive solver: forward
and adjoint. The forward approach can be implemented in a straightforward way with
the help of the automatic differentiation. However, the adjoint approach cannot be used
directly with the adaptive mesh methods due to either inadmissibility or inconsistency
problems. We proposed a new adjoint approach to solve the problems.

LIPING LIU AND SHUHUA ZHANG
Lakehead University and Tianjin University of Finance and Economics

Global Superconvergence Analysis for Finite Element Methods of
Integro-Differential Equations

Our talk introduces a global superconvergence in maximum norm for the derivatives of the
time-continuous Galerkin finite element solutions of parabolic integro-differential equation
of the form

ut + A(t)u +

∫ t

0

B(t, s)u(s)ds = f(t) in Ω × J,

u = 0 on ∂Ω × J,

u(0) = u0(x) x ∈ Ω,

where Ω ⊂ R2 is an open bounded domain with smooth boundary ∂Ω, J = (0, T ) with
T > 0, A(t) is a self-adjoint positive definite linear elliptic partial differential operator
of second order, and B(t, s) an arbitrary second-order linear partial differential operator,
both with coefficients depending smoothly on x, t, and, for the latter, s in the closure of
their respective domains.

First, we recall a regularized Green’s functions with memory terms and present some
estimates for them. Secondly, we consider the global superconvergence in W 1,∞-norm by
virtue of the supercloses between the finite element solution and the interpolation function
of the exact solution of the problem, and between the Ritz-Volterra projection of the exact
solution and its interpolant. In the end, we devote to the global superconvergence analysis
in W 1,∞-norm for hyperbolic integro-differential equations, Sobolev and viscoelasticity
type equations, on the basis of which some a posteriori error estimators are presented.
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MICHAEL D. MARCOZZI
University of Nevada

Approximation and valuation of derivative securities by variational
methods

We consider the valuation of derivative securities by variational methods. In particu-
lar, the expectations of such processes may be represented as solutions of variational
inequalities of evolutionary type typically characterized by multiple time variables, non-
local behavior, high number of degrees of freedom, unbounded state spaces, and lack of
boundary conditions. We introduce a general framework for such valuations as well as
Galerkin methodologies for their constructive approximations. Results are implemented
utilizing finite elements; benchmarks are provided which validate the applicability and
efficiency of the method and include the valuation of options on multiple assets, options
depending on path history, and options on a foreign currency.

CATHERINE MAVRIPLIS* AND HUIYU FENG
National Science Foundation and George Washington University

An Adaptive Spectral Element Method

The goal of this on-going work is to show that a high order adaptive Spectral Element
Method is an effective technique for the simulation of complex physical phenomena, in
particular fluid flow. Atmospheric, oceanographic, biological and other flows contain so
many different features over a wide range of scales, that adaptive refinement has become
a necessity in order to resolve these features efficiently. The spectral element method
lends itself naturally to adaptivity by its hybrid nature of a finite element method and
a spectral method. Both h- (finite element) and p- (spectral) refinement and coarsening
are used in this method to improve resolution in a cost effective way. The adaptivity
criteria are based on elemental a posteriori error estimators that analyze the quality of
the solution as well as give an estimated value of the error. A tree data structure has
been implemented to simplify the refinement and especially the coarsening algorithms.

Two-dimensional simulations of a thin premixed flame front wrinkled by synthetic tur-
bulent velocity fields illustrate the resolution capabilities of the adaptive spectral element
method. In the figure below, results of three cases are shown: a flame deformed by (a)
a sin shear flow, (b) a periodic array of vortices, and (c) the combination of shear and
vortices. The starting grid is the same for all the three cases with K =12 elements and
N =4th order polynomials or 5 × 5 collocation points in each element.

Adaptive spectral element simulations of thin flame front deformations (closeup view).
(a) Case One: a sine shear flow (K = 200, DoF=12180) (b) Case Two: a vortex flow
(K = 150, DoF=10746) (c) Case Three: a flow with sine shear and vortices (K = 232,
DoF=14300). Element boundaries are indicated by white lines. Red represents burnt
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gases, blue unburnt gases. DoF refers to the total number of degrees of freedom, while K

is the number of elements.
Three-dimensional simulations of a moving heat source will also be shown. A parallel

adaptive spectral element method is currently being developed. Load balancing, data
movement and access are important issues that need to be resolved for unstructured
dynamically adaptive methods. Some preliminary work in this area will be discussed if
time permits.

WILLIAM F. MITCHELL
National Institute of Standards and Technology

Parallel Adaptive Grid Refinement in PHAML

The numerical solution of partial differential equations (PDEs) is the most compute-
intensive part of most scientific computer simulations, with applications in all fields of
science and engineering. Consequently, improving the methods for solving PDEs has
been the focus of much research in numerical methods for several decades. In the last two
decades it has been shown that the combination of adaptive grid refinement and multigrid
solution, known as adaptive multilevel methods, provide effective methods on sequential
computers. Adaptive grid refinement reduces the problem size by focusing the effort
to the regions where higher resolution is needed. In the last decade, research has been
performed on parallelizing these procedures. Effective parallelization is difficult because
of the irregular nature of adaptively refined grids.

In this talk we present the coarse-grain algorithm for adaptive refinement used in the
parallel adaptive multilevel program PHAML. The algorithm uses only two communica-
tion steps during an adaptive refinement phase. Adaptive refinement can be performed
by each processor in parallel without communication until the very end. The algorithm
is identical to the sequential algorithm except that only the elements in the partition
owned by the processor, and those needed for compatibility of the grid, are candidates
for refinement. This can be achieved by setting the refinement error indicator to zero
outside the partition. A communication step at the end informs other processors of any
elements that were refined outside the partition to insure that the owner of that element
also refines it. A second communication step enforces an overlap requirement needed for
fast convergence of the parallel multigrid algorithm.

Results of numerical experiments on a cluster of eight PCs will be presented. These
results demonstrate 60–90% parallel efficiency.
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PETER K. MOORE
Southern Methodist University

Interpolation Error-Based A Posteriori Error Estimation for Parabolic
and Elliptic Equations

A new a posteriori error estimation strategy based on the Lobatto interpolant will be
presented. This approach offers several advantages over other methods: i) it is easy to
compute; ii) it is asymptotically exact; iii) it provides asymptotically exact estimates
one order higher than the current order; iv) it provides error indicators on elements with
irregular nodes. I will develop the estimates for linear two-point boundary value problems
and one- dimensional parabolic equations. I will discuss extensions of the method to three
dimensions and the impact of different bases on the error estimates.

JENS MÜLLER AND JAN G. KORVINK
IMTEK Institute for Microsystem Technology

An adaptive FE-method for multi-layer MEMS

Simulating the physical behavior of thin structures accurately is central to micro-electro-
mechanical systems (MEMS) CAD. We have implemented an adaptive finite element
method suited for multi-physically active and multi-layered thin MEMS structure simula-
tion. We use a multi-layer Kirchhoff-Love thin structure model that also covers thermo-
mechanical and piezoelectrical effects and which is implemented as an Argyris element.
The adaptivity is carried out by deriving residual error estimates for the thin structure
model together with recursive split patterns for triangular meshes.

Modeling thin structure MEMS

Many mechanical microsystem components are plate-like or beam-like. They are obtained
from semiconductor integrated- circuit manufacturing processes as multi-layer sandwiches
[1].

The bilinear or weak form for thin multi-layer structures can be expressed by means
of a Kirchhoff-Love model

a(U , V )

= (Â0 : (∇u)S − Â1 : ∇∇w + σ
ext
0 , (∇v)S)

−(Â1 : (∇u)S − Â2 : ∇∇w + σ
ext
1 ,∇∇v)

= (F , V ), (3)

where we have merged the in-plane displacement fields u and the out-of-plane deflection
field w and their variations v and v into the fields U and V respectively. In case the
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externally imposed prestress σext of the structure is caused by an additional temperature
field or arises from a piezoelectric effect, the corresponding fields also have to be considered
in the weak form. The indices i of the reduced (anisotropic) elastic and prestress tensors

Âi, σi account for the dimensionally reduced solid model and represent the moment order
with respect to the integration that is performed across the structure thickness. The right
hand side of (3) represents the external load acting on the structure. The solution space X

for this problem is some product space of sobolev spaces. We conformingly approximate
this solution space by 21-noded Argyris triangle C1 finite elements [2].

Error estimation

The bilinear form (3) induces an energy norm in which we are aiming to estimate the
solution error

|‖U − Uh‖|
2 = a(U − U h, U − Uh). (4)

The starting point for residual error estimation [3] is the inequality

|‖U − Uh‖| ≤ sup
�
∈X,|‖

�
‖|=1

a(U − Uh, V )

= sup
�
∈X,|‖

�
‖|=1

(F − LUh, V ) (5)

where L denotes the linear differential operator associated with the bilinear form (3)
through

(LW , V ) = a(W , V ) ∀W , V ∈ X. (6)

The term F − LU h in relation (5) is the residual with respect to the strong form of the
multi-layer plate problem. Calculating the right-hand-side of (5) by exploiting the conti-
nuity and ellipticity of the bilinear form (3) and using Clément’s interpolation estimates
[4] yields an a posteriori error estimation

|‖U − Uh‖| ≤ c

(

∑

T∈S

η2
T (Uh)

)1/2

(7)

where c is some constant and ηT (Uh) is the (local) element error estimator depending
only on the computed solution and the given data. This error estimator consists of
the sum of individual errors that all have a proper physical meaning and can thus be
related to specific simulation and design requirements of the MEMS developper. Major
error contributions consist of non physical body forces ‖∇(∇Â2 : ∇∇wh)‖

2
L2(T )h

4
T and

unphysical jumps of shear forces ‖[n∇Â2 : ∇∇wh]‖
2
L2(E)h

3
E and bending moments ‖[nÂ2 :

∇∇wh]‖
2
L2(E)hE across element interfaces (hE and hT are the triangle edge lengths and

the triangle diameters, respectively). The number of error contributions increases in case
of the structure’s multi- layer arrangement or if additional fields are present. In the latter
case a considerable number of terms are caused by the coupling of the various fields. The
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adaptivity then is carried out using a maximum refinement strategy [3] and a recursive
refinement algorithm for triangles [5]. We will show the formulation of this error estimator,
and demonstrate its use with computed examples from MEMS.
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MARIUS PARASCHIVOIU AND HAE-WON CHOI*
University of Toronto

Adaptive Computations of Finite Element Output Bounds for
Three-Dimensional Problems

An implicit A Posteriori framework to compute the upper and lower bounds for outputs
of finite element solutions is extended for adaptive mesh refinement in three space dimen-
sions. To motivate the characteristics of this framework, termed the bound method, a
two dimensional heat transfer problem in a multi-material electronic components array
is analyzed. The bound method calculates very sharp lower and upper bounds for the
temperature of the hottest component which is assumed to be the engineering output
of interest. For this two-dimensional problem, the bound method can yields more than
eighty-fold reduction in simulation time over a fine mesh calculation (330,050 d.o.f.) while
still maintaining quantitative control over the accuracy of the engineering output of in-
terest. For three dimensional problems, the bound method evaluates large bound gaps
(i.e., the difference between upper and lower bounds). To achieve a desired bound gap at
the lowest cost, an adaptive mesh refinement technique is used to refine the subdomain
mesh only where needed. An optimal stabilization parameter is also applied to improve
the sharpness of the bound gap. These techniques are applied to an output of a heat
transfer problem in a rectangular duct with a given velocity field. The average tempera-
ture at one section of the duct is bounded for given inlet temperature and heat flux. For
this problem, the adaptive mesh refinement strategy uses half the number of subdomain
elements required by an uniform mesh refinement strategy to calculate the same bound
gap.
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ABANI K. PATRA* AND ANDREW C. BAUER
University at Buffalo

Parallel Adaptive hp Schemes for Elliptic and Hyperbolic Systems

We will report here on the development of parallel adaptive hp schemes for the modeling
of two problems. First we will report on the problems of classical linear elastostatics.
Secondly we will describe early work on hyperbolic systems arising from a class of geo-
physical mass flows arising from landslides, avalanches and the like. These flows often
have catastrophic consequences and lead to great loss of life. Over the last few years
great strides have been made in developing sound mathematical models of these phenom-
ena (see for e.g. the work of Hutter et. al [1] or more recently Ivarson and Denlinger [2].
Accurate numerical modeling of such flows is of great importance in conducting the real-
istic simulations necessary for a variety of purposes ranging from public safety planning
to validation of the models. Developing parallel adaptive hp finite element simulations
requires development of suitable data structures (see for e.g.Laszloffy, Long and Patra [4],
load balancing schemes and solvers. For the elliptic systems, we will describe some of our
recent work on developing reliable and portable solvers using a variety of preconditioners.
For the hyperbolic systems we will extend here the work of Bey, Patra and Oden [3], on
model hyperbolic systems to create parallel adaptive approximations. The key features
of our approach include integrated development of parallel data structures and partition-
ers using good ordering schemes. Suitable adaptive strategies and residual based error
estimators are other highlights of the work. REFERENCES [1] K. Hutter, M. Siegel, S.
Savage and Y. Nohguchi, Two- dimensional spreading of a granular avalance down an
inclined plane Part 1 Theory, Acta Mechanica 100, 37-68, (1993). [2] R. Ivarson and
R. Denlinger, Flow of variably fluidized granular masses across threedimensional terrain
1. Couloumb mixture theory Journal Geophysical Research, 106 B1, 537- 552, (2001).
[3] K.S. Bey, J. T. Oden and A. Patra A Parallel hp- Adaptive Discontinuous Galerkin
Method For Hyperbolic Conservation Laws, in Applied Numerical Mathematics vol. 20,
1996, pp. 321-336. [4] A. Laszloffy, J. Long and A. Patra, ”Simple Data management
Schemes and Scheduling Schemes For Managing the Irregularities in Parallel Adaptive hp
Finite Element Simulations” Parallel Computing vol 26, 2000, pp.1765-1788.

MICHAEL PERNICE
Los Alamos National Laboratory

Newton-Krylov-FAC Methods for Problems Discretized on Locally Refined
Grids

Many problems in computational science and engineering are nonlinear and time-dependent.
Often, these problems have solutions that include spatially localized features, such as
boundary layers or sharp fronts, that require very fine grids to resolve. Resolving these
features with a globally fine grid is often impractical or prohibitively expensive, especially



)25�5(6($5&+�,1�0$7+(0$7,&$/�6&,(1&(6
7+(�),(/'6�,167,787(

ABSTRACTS 1.2

in three dimensions. Gridding approaches based on adaptive mesh refinement (AMR)
attempt to resolve these features by using a fine grid only where it is necessary. Numer-
ous AMR algorithms for hyperbolic problems with explicit timestepping and some classes
of linear elliptic problems have been developed. However, AMR algorithms for implicit
timestepping methods have received much less attention. The key to the success of such
an approach is the efficient solution of large-scale systems of nonlinear equations.

Recent efforts have demonstrated the effectiveness of Newton-Krylov methods com-
bined with multigrid preconditioners on a broad range of applications. This suggests that
a hierarchical approach, such as the Fast Adaptive Composite grid (FAC) method of Mc-
Cormick and Thomas, should provide effective preconditioning for problems discretized
on locally refined grids. The resulting Newton-Krylov-FAC method has been implemented
on structured AMR grids. The software infrastructure combines nonlinear solvers from
KINSOL or PETSc with the SAMRAI framework, and includes capabilities for implicit
timestepping. Convergence rates that are independent of the number of refinement levels
have been obtained for simple Poisson-like problems. Additional efforts to employ this
infrastructure in a variety of applications are underway. LAUR 02-0336. This work was
performed under the auspices of the U.S. Department of Energy by Los Alamos National
Laboratory under contract W-7405-ENG-36

P. SAUCEZ AND A. VANDE WOUWER
Faculté Polytechnique de Mons

A. CHAMPNEYS, P. ZEGELING AND W. E. SCHIESSER*
University of Bristol , Utrecht University and Lehigh University

Numerical investigation of existence properties of solitonic solutions of an
extended fifth-order

In recent years, much interest has developed in the numerical treatment of partial differ-
ential equations (PDEs) describing nonlinear wave phenomena, and particularly solitary
waves. In this study, special attention is paid to an extended fifth-order Korteweg-de
Vries equation (EKdV5) used to model water waves with surface tension.

As a particular case, this equation possesses a family of explicit solitary wave solutions.
In addition, the EKdV5 possesses a range of solitonic solutions whose existence properties
can only be assessed numerically.

In order to efficiently compute numerical solutions to the EKdV5 with sharp spatial
variations, we use an adaptive grid technique that automatically concentrates the spatial
nodes in the regions of high solution activity. An adaptive mesh refinement (AMR)
algorithm based on the equidistribution principle and spatial regularization is used. On
the resulting highly nonuniform spatial grids, the computation of the high-order derivative
terms is particularly delicate; stagewise differentiation schemes, which compute high-order
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derivatives by successive numerical computation of first-order derivatives, e.g., uxxxxx =
((((ux)x)x)x)x, produce very satisfactory solutions.

These numerical techniques are used to investigate: (a) the propagation of solitonic
waves corresponding to different parameter choices in the EKdV5, and (b) the existence
properties of the solutions (semi- stability with respect to perturbations, conservation of
invariants). Comparison with other numerical techniques (fixed uniform grids, nonuniform
grids with predefined node movements) are presented. The use of AMR allows numerical
solutions to be observed and investigated where other conventional techniques perform
poorly or even fail.

Some implementation details are given and the performance of the method is discussed
in terms of accuracy and computational efficiency.

WILLI SCHÖNAUER* AND TORSTEN ADOLPH

Rechenzentrum der Universität Karlsruhe

Development of flexibility and selfadaptation for the FDM: From FIDISOL
to S-FDEM

Usually the FDM is a second order method on a rectangular grid. In the FIDISOL (Finite
Difference Solver) program package for the solution of nonlinear systems of elliptic and
parabolic PDEs (black-box), see [1], Chapter 17, we have generalized the FDM to arbitrary
consistency order. The access to the discretization error is by the difference of different
consistency orders. We derive an error equation that makes transparent the influence of
all types of discretization and linearization errors and is the key to selfadaptation of the
whole solution process, e.g. to select the optimal consistency order, space and time mesh
size, stopping criterion for Newton iteration and iterative linear solver.

In order to increase the geometrical flexibility we developed the CADSOL (Cartesian
Arbitrary Domain Solver) package that solves the PDEs on an arbitrary domain with
body-oriented grid (rectangular in index space). Here we learned how to generate differ-
ence formulas of arbitrary order on an arbitrary set of nodes by influence functions and
we introduced dividing lines (DLs) that separate subdomains with different PDEs and
couple the solution globally by coupling conditions (CCs). However, the body-oriented
grid is a severe restriction.

In the FDEM (Finite Difference Element Method) program package, see [2], we gen-
eralize our solution method to an arbitrary 2-D/3-D domain with triangular/tetrahedral
grid. The consistency order is arbitrary, the FEM grid gives only the space structure. A
sophisticated algorithm has been developed to select nodes in rings (2-D) or balls (3-D)
for the generation of the difference formulas. The same error equation allows mesh refine-
ment and order selection. By DLs and CCs we treat a domain composed of subdomains
with different PDEs.
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Finally in the S-FDEM (Sliding FDEM) package (under development) we generalize
our solution method to a domain whose subdomains may slide relative to the other sub-
domains, separated by S-DLs (sliding DLs). In the different domains are quite different
meshes, so one has non-matching moving grids, with individual mesh refinement in the
subdomains and global error estimate. These requests result from industry cooperations,
e.g. if there is for a high pressure diesel injection pump the large housing, the thin lu-
brication gap and the rotating shaft, the whole can be solved uniformly with global error
estimate (note that we have a black-box solver).

The (S-)FDEM program package is parallelized with optimal data structures for dis-
tributed memory parallel computers, see [3]. The (iterative) solution of the resulting
large and sparse linear systems is made by the LINSOL program package, see [4], that
has polyalgorithms with automatic method switching between generalized conjugate gra-
dient methods of different properties. This is even a selfadaptation of the solution method.

References
[1] W. Schönauer, Scientific Computing on Vector Computers, North-Holland, Amster-
dam, 1987.
[2] W. Schönauer, T.Adolph, How WE solve PDEs, J. of Computational and Applied
Mathematics 131 (2001), pp. 473-492.
[3] W. Schönauer, Scientific Supercomputing: Architecture and Use of Shared andDis-
tributed Memory Parallel Computers, selfedition Willi Schönauer, ISBN 3-00-005484-7,
see http://www.uni- karlsruhe.de/Uni/RZ/Personen/rz∅3/book/
[4] http://www.uni- karlsruhe.de/Uni/RZ/Forschung/Numerik/linsol/

JAMES D. TERESCO* AND JOSEPH E. FLAHERTY
Williams College and Rensselaer Polytechnic Institute

Architecture-Aware Dynamic Load Balancing

Parallel computation is a well-established and essential tool for large-scale scientific com-
putation. Modern three- dimensional steady and transient scientific computation prob-
lems must execute in a parallel computational environment to achieve acceptable perfor-
mance. Adaptive computation has been recognized as a means of providing reliable results
to demanding scientific computational problems with minimal resources. Adaptivity re-
quires explicit parallelization and frequent dynamic load balancing, so the procedures must
be fast, must provide a high-quality partitioning, and should be incremental. Our par-
allel adaptive software uses Sandia National Laboratories’ Zoltan library for partitioning
and load balancing. Zoltan provides a common interface to a number of state-of-the-art
partitioning and dynamic load balancing algorithms.

Modern parallel processing is being performed on everything from the largest tightly-
coupled supercomputers to clusters of workstations. Any adaptive strategy seeking op-
timal performance had better account for processor, memory, and communications hier-
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archies. Processing nodes need not be the same. Such hierarchical and heterogeneous
systems are increasingly common, and present additional challenges for the development
of efficient software, particularly influencing dynamic load balancing procedures.

We have been developing the Rensselaer partition model (RPM), which includes a
hardware model to support architecture- aware load balancing. The hierarchical model
represents heterogeneous processor and network speeds, and may be used to represent any
parallel computing environment, including an SMP, a distributed- memory computer, a
network of workstations, or some combination of these. A similar hardware model is
being implemented within Zoltan to support architecture-aware load balancing for a wide
variety of partitioning and load balancing algorithms, and to provide a framework for the
implementation of new algorithms.

An architecture-aware load balancer can tailor partitions for a particular architecture
by, for example, seeking to achieve a good balance with minimal interprocessor communi-
cation penalties when a slow interconnection network is involved. This may be achieved
though appropriate selection from among existing algorithms, adjustment of parameters
or weights in existing algorithms, or through entirely new algorithms. A hierarchical bal-
ancing, where different algorithms are applied at different levels of the network hierarchy,
can be guided by the tree structure of the hardware model.

The hardware model is constructed when a parallel computation is initiated on a
particular system. This process involves (i) discovering the topology of the network and
constructing the model’s tree structure, and (ii) identifying the terminal nodes of the tree
and determining their relevant characteristics. Ideally, this process will be completely
automatic. We are investigating network discovery approaches to automate construction
of the tree, and agents, threads spawned during initialization of the library, to collect
information about the computing nodes.

ERVIN J. VINCENT AND LOUIS N. NTASIN*
Clemson University

A Posteriori Error Estimation and Adaptive Computation of Viscoelastic
Flows

The accuracy and quality of approximation of solutions to viscoelastic flows in complex
geometries depends strongly on using numerically stable methods that are computation-
ally costs effective. In practical applications of viscoelastic flow modeling, stress and
pressure singularities arise, resulting in layers that are difficult to resolve. We present
Finite Element based a posteriori error estimates for viscoelastic flows governed by dif-
ferential constitutive laws. These estimates are constructed based on a general nonlinear
residual-based framework for a posteriori error estimation. We examine two main dis-
cretizations: one with continuous stress approximation and another with a discontinuous
stress approximation. Using these estimators as error indicators and the DEVSS formula-
tion of the govening equations we then perform adaptive computation of viscoelastic flows.
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We examine the channel flow with an obstacle using a pseudo time stepping technique
(θ-method).

KUMAR VEMAGANTI
University of Cincinnati

Adaptive Model Selection for Multiscale Problems:
A Goal-Oriented Approach

In this talk, we discuss a goal-oriented methodology for the accurate simulation of cer-
tain multiscale phenomena. In virtually every simulation, there are two sources of error:
(a) the use of a simplified mathematical model that does not fully capture the fine-scale
physics of the phenomenon results in modeling error, and (b) the use of a numerical
method, such as the finite element method, introduces discretization or approximation
error. To minimize the total error in the simulation, it is necessary to estimate and
control both contributions. While the estimation and control of discretization error is
relatively well-explored [1, 2], there remain several unanswered questions regarding the
estimation and control of modeling error.

In [3, 4], Oden and Vemaganti put forward an adaptive mechanism for choosing the
most appropriate mathematical model based on the goals of the simulation. This goal-
oriented approach relies on local a posteriori estimates of modeling error. We describe
some recent work on the local estimation and control of modeling error and discuss ap-
plications to plate- and shell-shaped structures.
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RONG WANG
Dalhousie University

High Order Adaptive Collocation Code for 1-D Parabolic PDEs

A high order adaptive method-of-lines package, BACOL, is developed for solving one
dimensional parabolic partial differential equations. Collocation with a B-spline basis is
used for the spatial discretization. An approximate solution is calculated in a piecewise
polynomial subspace of degree p, and the spatial error estimate is obtained by using a
second solution computed in a degree p + 1 piecewise polynomial subspace.

BACOL controls both the spatial error and the time error. After each time step
the spatial error is estimated, and if it is larger than the spatial error tolerance, an
equidistribution principle is employed to refine the mesh. At the same time, the number
of mesh points employed can be changed if necessary. The time integration is done by a
differential-algebraic-eqation (DAE) solver, DASSL, which uses backward differentiation
formulas. Modifications made to DASSL include replacing the original linear algebraic
solver by the almost block diagonal system solver, COLROW and scaling the newton
iteration matrix to avoid the large condition number generated by the index-1 DAE.
Computational results, comparing with D03PPF, TOMS731, EPDCOL, indicate that
BACOL is reliable and extremely efficient in dealing with problems having solutions with
rapid variation.

SHEN R. WU
Ford Motor Company

Application Of Adaptive Finite Element To Crash Worthiness Analysis

Accuracy, robustness and efficiency are always the fundamental requirements for engineer-
ing applications. Adaptive method of finite element analysis can serve these goals if it can
efficiently deliver high accuracy solutions to the engineering problems. Crash worthiness
analysis involves highly nonlinear transient dynamics problems with large deformation of
thin shell structures, elastic- plasticity, surface contact, etc. This report presents case
studies of crash analysis using adaptive method implemented in LSDYNA, commercial
software of explicit finite element. The change of normal angle between the neighboring
shell elements is used as an engineering error indicator. Examples of structural com-
ponent crash simulations are used to illustrate the adaptive procedure of explicit finite
element analysis and to examine the quality of adaptive refinement with comparisons to
uniform refinement. It is observed that solutions by adaptive method can compare to
those using a uniform mesh of the same level but use much less CPU time. For this type
of transient dynamics problem, a backward loop to resume the analysis at an earlier time
with a refined mesh is necessary to avoid or reduce error accumulation. A suitable time
period of refinement is important for the engineering applications. The error indicator
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based on shell element normal rotation is found to be effective for the solutions of bending
dominated crashworthiness applications.

YUESHENG XU AND QINGSONG ZOU
University of West Virginia

Adaptive Wavelet Methods for Elliptic Operator Equations with Nonlienar
Terms

We will present an adaptive method for solving elliptic operator equations with nonlinear
terms when the solution is in a Besov space based on wavelet approximation. We prove
that this method produces an approximate solution with convergence order O(N−s) where
N is the number of operations used to compute the approximate solution.

NAIL K. YAMALEEV AND MARK H. CARPENTER
National Research Council and NASA Langley Research Center

Moving Mesh Method for Efficient Simulation of Synthetic Jet Actuators

The effects of numerical boundary conditions on the accuracy of simulation of synthetic
jet actuators are analyzed. The flowfield surrounding a synthetic jet actuator located on
a flat plate is simulated numerically by solving the 2-D unsteady compressible Navier-
Stokes equations. Time-accurate solutions are obtained by an explicit finite difference
method which is 4th-order accurate in both time and space. The numerical simulation is
based on treating the actuator as a suction/blowing boundary condition imposed inside
the throat of the actuator. Numerical results have shown that the conventional boundary
conditions based on the normal momentum equation do not provide mass conservation.
As follows from our calculations, the maximum mass rate error, which occurs during
the suction stage, is of the order of 15% if the normal momentum equation is used as
a boundary condition for pressure. Note that the error introduced into the numerical
solution increases as the boundary condition is imposed closer to the plate surface. To
overcome this problem, new characteristic boundary conditions based on the moving mesh
technique are proposed. The new method simulates the 2-D actuator by solving the 1-D
Euler equations on a moving grid. The simplified actuator model has several advantages.
First, this approach provides conservation of not only mass, but also momentum and
energy. Furthermore, the new method is much more efficient in terms of computational
time compared with the full 2-D simulation of the flowfield in the actuator. Numerical
examples demonstrating efficiency and accuracy of the new strategy are presented


