
A Review of strong types
Here T will be complete theory. We will work in a monster C and, as usual,

small means of cardinality smaller than the one of C. A sequence in C is not
necessarily finite, but its length is always small.

Definable without more precision means definable without parameters. If
we want to precise the set of parameters over which it is definable, we will say
it is A-definable or definable over A. A type-definable set (or relation) is a set
(or a relation) which is a (possibly infinite, but always small) intersection of
definable sets. A set is A-invariant (A is a set of parameters) if it is left fixed
by any A-automorphism. An invariant set is a set which is ∅-invariant.

Remark: A set which is type-definable over B and A-invariant is in fact type-
definable over A.
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The 3 strong types

Let A be a set of parameters and a and b be sequence in C. Then

Definitions:

1. The invariant strong type (or the Lascar strong type): tfI(a/A) = tfI(b/A)
if and only if, for all A-invariant A-bounded equivalence relation R, we
have R(a, b).

2. The compact strong type (or the Kim-Pillay strong type): tfK(a/A) =
tfK(b/A) if and only if, for all A-type-definable A-bounded equivalence
relation R, we have R(a, b).

3. The definable strong type (or simply strong type, or the Shelah strong
type): tf(a) = tf(b) if and only if, for all finite equivalence relation R
definable without parameter, we have R(a, b).
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4. If n is an finite or infinite ordinal (but small), we will denote by SI
α(A)

the set Mα divided by the relation tfI(x/A) = tfI(y/A). We write SI
α(T )

for SI
α(∅).

5. Same thing for SK
α (A)

Remarks:

1. It is clear that 1 is stronger than 2 which is stronger than 3.

2. To have the same invariant strong type is itself a invariant bounded equiv-
alence relation, finer that every other; an analogous remark holds for the
compact strong type.

¿From now on, we will work with the strong types over the empty set. But,
of course, everything that we will say will generalise for strong types over a
small set of parameters.

Definition: A theory is G-compact if, for all finite A, the relation tfI(a/A) =
tfI(b/A) is type definable.

Some motivations

1. Amalgamation of for strong type

2 〈AutA(C) ∪ AutB(C)〉 = AutA∩B(C)

3. Canonical basis are hyperimagianries in simple theories.

Thick relations

Definition A binary relation R is thick if it is symmetric, reflexive and any set
of elements which are pairwise not linked by R has small cardinality; a formula
ϕ is thick if it defines a thick relation.

Remarks:

1. If ϕ is a thick formula, then there is a k ∈ ω such that in any set of
cardinality bigger than k, there are two distinct points a and b such that
ϕ(a, b).

2. If a and b are members of the same infinite indiscernible sequence, then,
for all invariant thick relation R, R(a, b).
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3. If for every thick formula ϕ, we have ϕ(a, b), then there exists an infinite
indiscernible sequence which contains a and b.

If a and b are members of the same infinite indiscernible sequence, we will
write Θ(a, b). So Θ is the strongest invariant thick relation and it is type-
definable.

Facts:

1. If, for some model M ≺ C , t(a/M) = t(b/M), then there exists c such
that Θ(a, c) and Θ(b, c) (i.e. (a, b) ∈ Θ2).

2. If Θ(a, b), then, for some model M , t(a/M) = t(b/M).

3. The transitive closure of the relation Θ is exactly the relation “to have
the same invariant strong type”. It is also the transitive closure of the
relation: there exists a model M such that t(a/M) = t(b/M).

Topology

Let X ⊂ Cα, and assume that X is invariant. Then X is completely deter-
mined by the following set:

Tp(X) = {p ∈ S(T ) ;

there exists a ∈ X such that p = t(a)}

= {p ∈ S(T ) ; for all a such that p = t(a), a ∈ X}

and conversely.

Fact: the following are equivalent:

1. X is type-definable;

2. Tp(X) is a closed subset of Sα(C);

3. Tp(X) is closed under ultraproducts.

Definition: Let Y ⊆ SI
α(T ) or Y ⊆ SK

α (T ) and call X the set of realisations
of types in Y (in fact, X =

⋃
Y ). Then we say that Y is closed if X is type-

definable over some small set.

Facts:

1. X (in SI
α(T ) or in SK

α (T )) is closed if and only if it is closed under ultra-
products;
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2. SK
α (T ) is a compact Hausdorff space;

3. SI
α(T ) is a compact space (which means that if an intersection of a family

closed sets is empty, then an intersection of a finite subfamily is already
empty). It is Hausdorff if and only if it is T1 (that is, all points are closed);
if T is G-compact, then SI

α(T ) is Hausdorff.

4. The natural surjections from SI
α(T ) onto SK

α (T ) and from SK
α (T ) onto

Sα(T ) are continuous.

Galois groups

Definition: The group of I-strong automorphisms of C is defined by

AutfI(C) = {g ∈ Aut(C) ;

for all α, g leaves pointwise fixed the set SI
α(T )}

In other word, an automorphism g belongs to AutfI(C) if and only if, for
all invariant bounded equivalence relation R and for all sequence a of the right
length, we have |= R(a, g(a)).

Similarly, we define the group of K-strong automorphisms of C

AutfK(C) = {g ∈ Aut(C) ;

for all α, g leaves pointwise fixed the set SK
α (T )}

They are normal subgroups of Aut(C) and the Galois groups are just the
quotient groups:

GalI(T ) = Aut(C)/AutfI(C)

GalK(T ) = Aut(C)/AutfK(C)

We will denote by µ the canonical homomorphism from Aut(C) onto GalI(T )
and µ′ the canonical homomorphism from Aut(C) onto GalK(T ). There is also
a natural homomorphism from GalI(T ) onto GalK(T ) that we will denote by
ν.
Remarks:

1. Of course AutfI(C) ⊆ AutfK(C). If T is G-compact, then AutfI(C) =
AutfK(C).

2. GalI(T ) can be identified naturally with the group of elementary permu-
tation of SI

α(T ). That is why we allowed ourself to drop the C. The same
remark applies of course to the other Galois groups.
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Facts:

1. If M is a small submodel of C, then any automorphism which leaves M
pointwise fixed belongs to AutfI(C).

2. If g and h are 2 automorphisms such that, for some m enumerating a
submodel M , t(g(m)/M) = t(h(m)/M), then µ(g) = µ(h).

3. The cardinality of GalI(T ) is at most 2‖T‖. The same is of course true for
GalK(T ).

4. Let ∆ =
⋃

M≺C AutM (C). Then AutfI(C) is the subgroup of Aut(C)
generated by ∆.

5. If for some k ∈ ω, AutfI(C) = ∆k, then AutfI(C) = AutfK(C) and
invariant strong types and compact strong types are the same thing. I do
not know about the converse.

6. If T is stable, then AutfI(C) = ∆2. If T is simple, then AutfI(C) = ∆3.

7. For every k > 0, there is a theory such that AutfI(C) = ∆k but AutfI(C) 6=
∆k−1 .

8. (Kim) AutfI(C) = AutfK(C) if and only if the 2 following conditions are
satisfied: 1. AutfI(C) is closed in Aut(C) (endowed with the pointwise
topology); for each n ∈ ω, the relation tfI(x) = tfI(y) for sequences x
and y in Mn is type definable.

Topology on Galois groups

Proposition: Let C ⊆ GalI(T ). then the following conditions are equivalent:

1. For all sequence a in C, the set

{g(a) ; µ(g) ∈ C}

is type-definable over some small set;

2. For all sequence a in C, for all M0 ≺ C, the set {g(a) ; µ(g) ∈ C} is
type-definable over M0.

3. C is closed under ultraproducts to be explained.

We define a topological structure on GalI(T ) by decreeing that C is closed
if and only if it satisfies the above condition.

We have a similar proposition for GalK(T ), and we may define a topology
on GalK(T ) in a similar way:

Proposition:Let C ∈ GalK(T ). then the following conditions are equivalent:
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1. For all sequence a in C, the set

{g(a) ; µ′(g) ∈ C}

is type-definable over a small set;

2. For all sequence a in C, for all M0 ≺ C, the set {g(a) ; µ(g) ∈ C} is
type-definable over M0.

3. C is closed under ultraproducts.

Facts:

1. With this topologies, GalI(T ) and GalK(T ) are topological groups;

2. The map µ from Aut(C) endowed with the pointwise topology onto GalI(T )
is continuous. The same is true for µ′ and ν.

3. GalK(T ) is a compact Hausdorff topological group.

4. If g ∈ GalI(T ), the topological closure of {g} is exactly ν−1ν(g).

5. GalI(T ) is a compact topological group. It is Hausdorff if and only if it is
T1 if and only if it is equal to GalK(T ).

6. GalK(T ) is a profinite group if and only if the compact strong types are
equal to the (ordinary) strong types if and only if, on every complete type,
every type-definable bounded equivalence relation is the intersection of a
family of finite definable equivalence relations.

A Galois correspondence

Let define an ultraimaginary element as being the class of some sequence
modulo an invariant equivalence relation. Such an element will be bounded if
it has only a small number of conjugate under the action of Aut(C).

We can develop a kind of Galois correspondance between the subgroups of
GalI(T ) and the bounded ultraimagianry elements:

Facts:

1. If e is a bounded ultraimaginary element, then Aute(C), the set of auto-
morphisms which leave fixed e, is a subgroup of Aut(C) which contains
AutfI(C)

(so H = Aute(C)/AutfI(C) is a subgoup of GalI(T )).

2. Conversely, if H is a subgroup of GalI(T ), then there exists an ultraimag-
inary element e such that Aute(C) = µ−1(H).
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3. In this correspondance, H is a closed subgroup of GalI(T ) if and only if e
is hyperimaginary (up to interdefinability).

4. And H is clopen if and only if e is an imaginary element.

Using this correspondance and (more deeply) the fact that any compact
Hausdorff group is the projective limit of compact Lie group, we can show that
any hyperimaginary element is interdefinable with a set of hyperimaginaries of
the form a/E where a ∈ Cn for some n ∈ ω and E a type-definable equivalence
relation on Cn.

An example of non G-compact theory

(due to Martin Ziegler)
First we construct, for any n ∈ ω, a theory Tn. We will see that, if n = 2k,

then AutfI(C) = ∆k but AutfI(C) 6= ∆k−1 .
The language contains one symbol for a ternary relation R and one symbol

for a unary function f .
The axioms says that:

1. R is a “dense circular ordering”, i.e.:

∀x∀y∀z(R(x, y, z) ⇐⇒ R(y, z, x) ⇐⇒ R(z, x, y));

∀x(“the binary relation R(x, y, z) is a dense linear ordering without end-
points on the set of elements different of x”)

2. f respects the relation R;

∀x(fn(x) = x);

∀x(R(f i(x), f j(x), f `(x)) for 0 ≤ i ≤ j ≤ ` < n.

Given 2 models M and N of T , it is easy to see that the family of all
isomorphisms from a finite substructure of M onto a finite substructure of N
has the back and forth property. Consequently, Tn is complete, ℵ0-categorical
and has the elimination of quantifiers.

Facts:

1. Aut(C) = AutI(C).

2. If R(x, f(x), y) and R(y, f−1(x), x) then there is no submodel M0 such
that t(x/M0) = t(y/M0). So, there is no g ∈ ∆ such that y = g(x).

3. If k < n/2, R(x, f(x), y) and R(y, f−1(x), x) then there is no g ∈ ∆k such
that y = g(x).
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It remains to glue all these theories together.

Some Problems

1. If T is simple, we have seen that the notion of invariant strong type and
compact strong type coincide. But can we find an example where this is not the
notion of Shelah strong type?

Partial answers:
YES (Hrushovski) but with a Robinson theory.
NO, (Buechler), if T is low.

2. What about the group AutfK(C)/AutfI(C). This group is naturally
isomorphic to H , where H is the topological closure of {e} in GalI(T ). We
have an example of a countable theory where this group has cardinality 2ℵ0 .
Are there other constrains? Can this group be finite (but not trivial), or
countable. The only thing that we know is that, for a countable theory, if
‖AutfK(C)/AutfI(C)‖ > ℵ0 then ‖AutfK(C)/AutfI(C)‖ = 2ℵ0 .

If AutI(C) is not closed in Aut(C) (endowed with the pointwise topology),
then certainly AutfK(C)/AutfI(C) cannot be countable.
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