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For a discussion of Bell’s Theorem from a data processing perspective, we
refer the reader to [4, 3].1 Also, an excellent survey of quantum communica-
tion complexity can be found in [2].2 Both [4, 2] contain fairly extensive lists
of references—more complete than those provided here. In what follows, we
review some of the basics of classical and quantum communication complex-
ity, limiting our attention to three fundamental communication complexity
problems: equality, intersection, and inner product.

In the communication complexity model, there are two parties, tradition-
ally referred to as Alice and Bob, who each receive an n-bit binary string as
input (x = x0x1 . . . xn−1 for Alice and y = y0y1 . . . yn−1 for Bob) and the goal
is for them to determine the value of some function of the of these 2n bits.
The resource under consideration here is the communication between the two
parties, and an algorithm is a protocol, where the parties send information to
each other (possibly in both directions and over several rounds) until one of
them (say, Bob) obtains the answer. This model was introduced by Yao [17]
and has been widely studied in the classical context (see [15] for a survey).

An interesting example is the equality problem, where the function is
EQ , defined as

EQ(x, y) =

{

1 if x = y
0 if x 6= y.

A simple n-bit protocol for EQ is for Alice to just send her bits x0, . . . , xn−1

to Bob, after which Bob can evaluate the function by himself (in fact, there
is a similar n-bit protocol for any function). The interesting question is
whether or not the EQ function can be evaluated with fewer than n bits
of communication—after all, the goal here is only for Bob to acquire one bit.
The answer depends on whether or not any error probability is permitted.
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If Bob must acquire the value of EQ(x, y) with certainty then it turns out
that n bits of communication are necessary. Note that Alice sending the first
n − 1 bits of x will clearly not work, since the answer could critically depend
on whether or not xn−1 = yn−1. The number of possible protocols to consider
is quite large and an actual proof that n bits communication are necessary is
nontrivial. The interested reader is referred to [15] for a proof.

On the other hand, for probabilistic protocols (where Alice and Bob can
flip coins and base their behavior on the outcomes), if an error probability of
ε > 0 is permitted then O(log(n/ε)) bits of communication are sufficient. As
usual, we are not assuming anything about a probability distribution on the
input strings; the error probability is with respect to the random choices made
by Alice and Bob, and it applies regardless of what x and y are.

We now describe an O(log(n/ε))-bit protocol for EQ. First of all, Alice and
Bob agree on a finite field whose size is between n/ε and 2n/ε (such a field
always exists, and its elements can be represented as O(log(n/ε))-bit strings).
Now, consider the two polynomials

px(t) = x0 + x1t + · · · + xn−1t
n−1 (1)

py(t) = y0 + y1t + · · · + yn−1t
n−1. (2)

For any value of t in the field, Alice can evaluate px(t) and Bob can evaluate
py(t). If x = y then the two polynomials are identical, so px(t) = py(t) for
every value of t. But, if x 6= y then, since px(t) and py(t) are polynomials
of degree n − 1, there can be at most n − 1 distinct values of t for which
px(t) = py(t). Therefore, if a value of t is chosen randomly from the field then
the probability that px(t) = py(t) is at most n−1

n
ε < ε. Now, the protocol

proceeds as follows. Alice chooses a random element of the field, t, and then
sends t and px(t) to Bob (this consists of O(log(n/ε)) bits). Then Bob outputs
1 if and only if px(t) = py(t). If x = y then Bob always outputs 1 and if x 6= y
then the probability that Bob erroneously outputs 1 is less than ε.

Two other interesting communication complexity problems are the inter-
section problem, where the function is IN , defined as

IN (x, y) = (x0 ∧ y0) ∨ (x1 ∧ y1) ∨ · · · ∨ (xn−1 ∧ yn−1) (3)

and the inner product problem, where the function is IP , defined as

IP(x, y) = (x0 ∧ y0) ⊕ (x1 ∧ y1) ⊕ · · · ⊕ (xn−1 ∧ yn−1). (4)

Intuitively, for IN, the inputs x and y can be thought as encodings of two
subsets of {0, . . . , n−1} and the output is a bit indicating whether or not they
intersect. Also, IP is the inner product of x and y as bit vectors in modulo
two arithmetic. The deterministic communication complexity of each of these
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problems is the same as that of EQ : any deterministic protocol requires n
bits of communication. Also, it has been shown that both of these problems
are more difficult than EQ when probabilistic protocols are considered: any
probabilistic protocol with error probability up to (say) 1

3
requires Ω(n) bits

of communication (see [8] for IP, and [13] for IN ; also [15]).
It is natural to ask whether any reduction in communication can be ob-

tained by somehow using quantum information. Define a quantum commu-
nication protocol as one where Alice and Bob can exchange messages that
consist of qubits. In a more formal definition of this model, there is an a pri-
ori system of m qubits, some of them in Alice’s possession and some of them
in Bob’s possession. The initial state of all of these qubits can be assumed to
be |0〉, and Alice and Bob can each perform unitary transformations on those
qubits that are in their possession and they can also send qubits between them-
selves (thereby changing the ownership of qubits). The output is then taken
as the outcome of some measurement of Bob’s qubits. Various preliminary
results about communication complexity with quantum information occurred
in [4, 9, 7, 14, 18].

There are fundamental results in quantum information theory which imply
that classical information cannot be “compressed” within quantum informa-
tion [12]. For example, Alice cannot convey more than r classical bits of
information to Bob by sending him an r-qubit message. Based on this, one
might mistakenly think that there is no advantage to using quantum informa-
tion in the communication complexity context. In fact, there exists a quantum
communication protocol that solves IN whose qubit communication is approx-
imately the square root of the bit communication of the best possible classical
probabilistic protocol. The following result is from [5].

Theorem 1 ([5]) There exists a quantum protocol for the intersection prob-
lem (IN) that uses O(

√

n log(1/ε) log(n)) qubits of communication and errs
with probability at most ε.

Moreover, the quantum protocol can be adapted to actually find a point in
the intersection in the cases where IN (x, y) = 1. That is, to produce an
i ∈ {0, . . . , n − 1} such that xi ∧ yi = 1. This problem, like IN, has classical
probabilistic communication complexity Ω(n).

The protocol in Theorem 1 can be viewed as a “distributed” version of
Grover’s quantum search algorithm [11] (see also [1]). To understand it, it is
helpful to think of the inputs x and y as functions rather than strings, and
we introduce some notation that makes this explicit. For convenience, assume
that n = 2k for some k (if not then x and y can lengthened by padding them
with zeroes), and define the functions fx, fy : {0, 1}k → {0, 1} as

fx(i) = xi (5)
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fy(i) = yi (6)

where {0, 1}k and {0, 1, . . . , 2k − 1} are identified in the natural way. Alice
and Bob’s input data can be thought of as fx and fy, rather than x and y
(respectively). In particular, given x, Alice can simulate an fx-query , which is
the unitary transformation that maps |i〉 |j〉 to |i〉 |j ⊕ fx(i)〉 (for all i ∈ {0, 1}k

and j ∈ {0, 1}). Similarly Bob can simulate fy-queries.
To construct an efficient quantum protocol for IN, define the function

(fx ∧ fy) : {0, 1}k → {0, 1} as (fx ∧ fy)(i) = fx(i) ∧ fy(i) (for i ∈ {0, 1}k), and
note that

IN (x, y) =

{

1 if (fx ∧ fy) is satisfiable
0 otherwise.

(7)

(A {0, 1}-valued function is satisfiable if it assumes the value 1 at at least one
point in its domain.) Grover’s search algorithm [11] can be used to determine if

(fx∧fy) is satisfiable by making O(
√

2k log(1/ε)) = O(
√

n log(1/ε)) (fx∧fy)-

queries, where ε is the error probability permitted [6]. The problem is that
neither Alice nor Bob individually have enough information to perform an
(fx ∧ fy)-query (since this depends on both x and y). If Alice were to begin
by sending x to Bob then Bob could make (fx ∧ fy)-queries on his own, but
note that this entails n bits of communication to begin with. Another, more
efficient, approach is for Alice and Bob to collectively simulate (fx ∧ fy)-
queries by combining fx-queries (which Alice can perform) with fy-queries
(which Bob can perform), and a small amount of communication. To see how
this is accomplished, consider the circuit in Fig. 1. First, ignoring the broken
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Figure 1: Simulation of an (fx ∧ fy)-query in terms of fx-queries and fy-queries.
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vertical lines, note that the quantum circuit (composed of two fx-queries, two
fy-queries, and one Toffoli gate) is equivalent to an (fx ∧fy)-query. That is, it
implements the unitary transformation that maps the state |i〉 |0〉 |0〉 |j〉 to the
state |i〉 |0〉 |0〉 |j ⊕ (fx ∧ fy)(i)〉 (for all i ∈ {0, 1}k , j ∈ {0, 1}). This circuit
uses two extra qubits that are each initialized in state |0〉 and which incur no
net change.

Now, the protocol for IN can be thought of as Bob executing Grover’s
search algorithm to determine if (fx ∧ fy) is satisfiable, except that, whenever
an (fx ∧ fy)-query arises, Bob interacts with Alice to simulate the circuit in
Fig. 1: first Bob performs an fy-query gate, then he sends the k + 3 qubits
to Alice who performs some actions involving fx-queries and a Toffoli gate
(shown between the two broken lines) and sends the qubits back to Bob, who
performs another fy-query. Note that the total amount of communication
that this entails is 2(k + 3) ∈ O(log n) qubits. Therefore, the total commu-
nication for Bob’s simulation of the O(

√

n log(1/ε)) queries to (fx ∧ fy) is
O(

√

n log(1/ε) log(n)), as claimed in Theorem 1.
More recently, Raz has given an example of a communication complexity

problem which a quantum protocol can solve with exponentially less commu-
nication than the best classical probabilistic protocol. The description of the
problem is more complicated than EQ, IN, and IP, and the reader is referred
to [16] for the details.

We conclude by noting that, for the inner product function IP, it has been
shown [14, 10] that even quantum protocols require communication Ω(n) for
this problem, even when the error probability is permitted to be as large as
(say) 1

3
.
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