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Symplectic geometry has its roots in classical
mechanics.

A prototype for a symplectic manifold is the
phase space which parametrizes the position q
and momentum p of a classical particle.

If the Hamiltonian (kinetic + potential en-
ergy) is

H =
p2

2
+ V (q)

then the motion of the particle is described by
Hamilton’s equations

dq

dt
=

∂H

∂p
= p

dp

dt
= −∂H

∂q
= −∂V

∂q
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In mathematical terms, a symplectic manifold
is a manifold M endowed with a 2-form ω which
is:

• closed: dω = 0

(integral of ω over a 2-dimensional subman-
ifold which is the boundary of a 3-manifold is
0)

• nondegenerate (at any x ∈ M ω gives a map
from the tangent space TxM to its dual T ∗xM ;
nondegeneracy means this map is invertible)

If M = R2 is the phase space equipped with
the Hamiltonian H then the symplectic form
ω = dq ∧ dp transforms the 1-form

dH =
∂H

∂p
dp +

∂H

∂q
dq

to the vector field

XH = (−∂H

∂q
,
∂H

∂p
)
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The flow associated to XH is the flow satisfying
Hamilton’s equations.

Darboux’s theorem says that near any point
of M there are local coordinates

x1, . . . , xn, y1, . . . , yn

such that
ω =

n∑
i=1

dxi ∧ dyi.

(Note that symplectic structures only exist on
even-dimensional manifolds)

Thus there are no local invariants that distin-
guish between symplectic structures: at a local
level all symplectic forms are identical.

In contrast, Riemannian metrics g have local
invariants, the curvature tensors R(g), such that
if R(g1) 6= R(g2) then there is no smooth map
that pulls back g1 to g2.
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Geometries: For x ∈ M , we specify

• Riemannian geometry: Riemannian metric
g, an inner product on TxM

•Algebraic geometry: (Almost) complex struc-
ture J , a linear map J : TxM → TxM satisfy-
ing J2 = −1

• Symplectic geometry: a skew symmetric bi-
linear form ω on TxM which is invertible as a
map TxM → T ∗xM

We may require that any two of these struc-
tures be compatible:

Ex. ω is compatible with J if J∗ ◦ ω ◦ J = ω

Any two of these which are compatible de-
termine the third. The intersection is (almost)
Kähler geometry: an (almost) Kähler manifold
is an (almost) complex manifold equipped with
a compatible symplectic form and metric.
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Complex and almost complex structures:

An almost complex structure J is integrable
(comes from a structure of complex manifold) if
the Nijenhuis tensor N vanishes. One way to
express this condition is that the tangent space
of a manifold with an almost complex structure
J may be decomposed into ±

√
−1 eigenspaces,

and hence any vector field X decomposes as the
sum of a +

√
−1 part X ′ and a −

√
−1 part X ′′.

The condition that J is integrable means that
if X and Y are two vector fields then the Lie
bracket [X ′, Y ′] of the +

√
−1 parts is again a

vector field in the +
√
−1 eigenspace of TM⊗C.
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A complex manifold is a manifold equipped
with coordinate charts z1, . . . , zn, where zj ∈
C, for which the chart maps are holomorphic
maps (in all the variables zi). A complex mani-
fold automatically has an almost complex struc-
ture (if zj = xj +

√
−1yj, we require that J

identifies with the matrix


0 1
−1 0

 if the tangent

space is identified with (x, y).)

An almost complex structure is integrable iff
it comes from a structure of complex manifold.

For any symplectic manifold there exists an
almost complex structure compatible with the
symplectic structure. This need not be a com-
plex structure (many symplectic manifolds can-
not be given a structure of complex manifold).
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Integrable systems (Workshop 1):

An integrable system is a collection of n smooth
functions f1, . . . , fn on a symplectic manifold of
dimension 2n for which the Hamiltonian vector
fields Xj are linearly independent almost every-
where and satisfy

ω(Xi, Xj) = 0 ∀i, j.
Some notable examples were treated in this

workshop (Calogero-Moser system, Toda lattice,...)
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Symplectic and contact topology (Work-
shop 2) In symplectic topology one of the major
concerns is the study of maps from one symplec-
tic manifold to another to obtain topological in-
formation. The focus may take several forms.

1. Symplectic capacities: Roughly, sym-
plectic capacities measure the size of a ball in
R2n which may be embedded symplectically in
a symplectic manifold.

In dimension 2, the symplectic form is sim-
ply the area or volume form, so a map pre-
serving the symplectic form is simply a volume-
preserving map. In higher dimensions, how-
ever, the symplectic form imposes a stronger
constraint than that a map preserve the volume.
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Example: Symplectic camel problem [McDuff,
Traynor]

Let M = R2n − H , where H is a hyper-
plane with a small ball U removed (so M is
connected).

Question: is there a continuous family (Ft :
t ∈ [0, 1]) of symplectic embeddings of the unit
ball B into M for which F0(B) is entirely on
one side of H and F1(B) is on the other side of
H?

Answer: Not unless the radius of the ball U
is large enough. (In contrast it is easy to find a
volume-preserving map which will do this.)

Another way to say this is that the symplectic
capacity of M is finite. (Of course the symplec-
tic capacity of R2n is always infinite.)
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2. Pseudoholomorphic curves:

We study the space M of smooth maps

f : S2 → M

for which

f∗ ◦ JS2 = JM ◦ f∗

where f∗ : TxS
2 → TfxM.

This can be used to define invariants general-
izing topological invariants from (co)homology.

Intersection numbers:

Yj submanifolds of Mm of dimension rj with
∑
j(m − rj) = m so the dimension of ∩jYj is

0 (if in general position) The intersection num-
ber of the Yj is the number of points in ∩jYj
(counted with appropriate signs associated to
the orientations of the Yi).
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By Poincaré duality any class Y in M deter-
mines a cohomology class αY on M . If the di-
mensions of the αY add up to the dimension of
M then we can define

∫
M ∪jαYj

.

To the αY we may associate topological in-
variants of the space M (the Gromov-Witten
invariants). These generalize the intersection
numbers (the latter correspond to the compo-
nent of the moduli space M corresponding to
those maps which send S2 to a point).

12



Analogues and generalizations of the Gromov-
Witten invariants also formed the subject of the
Coxeter lecture series by A. Givental; Givental
spoke on his proof of the Virasoro conjecture,
namely that certain generating functions which
encode the Gromov-Witten invariants are anni-
hilated by the generators of the Virasoro algebra
(the algebra of generators of the Lie algebra of
the loop group).
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3. Arnol’d conjecture: The Arnol’d conjec-
ture states that any diffeomorphism φ on a sym-
plectic manifold M arising from the flow of a
(time dependent) Hamiltonian function Ht has
at least as many fixed points as a smooth func-
tion on M must have critical points (in other
words the number of fixed points is at least ∑

j bj
where bj is the dimension of the j’th cohomol-
ogy group).

The Arnol’d conjecture has been proved under
the hypothesis that π2(M) = 0 or more gener-
ally ω[π2(M)] = 0. Recently this hypothesis
has been eliminated (Fukaya-Ono).
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4. Gauge theory

A connection A on a vector bundle E of rank
n over a manifold M may be thought of as an
element of

A = Ω1(M)⊗ End(Cn)

(once we have trivialized E). The curvature is

FA = dA + A ∧ A ∈ Ω2(M)⊗ End(Cn)

We may study the critical points of a functional
Φ onA, for example the Yang-Mills functional

Φ(A) =
∫
M |FA|2.

Each critical manifold is infinite-dimensional.
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Gauge group: G is the space of automor-
phisms of a principal G-bundle P → M cover-
ing the identity map on M .

If we have chosen a trivialization of P ,

G = C∞(M, G)

(choice of trivialization = “choice of gauge”)

Infinite-dimensional Lie groups and gauge the-
ory formed the subject of a graduate course by
B. Khesin which was taught as part of the the-
matic program.
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Morse theory:

M Riemannian manifold with a smooth func-
tion

F : M → R.

Critical manifolds are the submanifolds where
the gradient∇Fof F vanishes. (e.g. maximum,
minimum)

Gradient flow

dΦ

dt
= ∇F (Φ(t))

The gradient flow paths define a differential on
a chain complex for which the chains are linear
combinations of critical manifolds.

This picture generalizes to some functionals
on infinite dimensional manifolds.
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(a) Symplectic action functional:

(Symplectic Floer homology)

(Y.ω) symplectic manifold

M = C∞(S1, Y ) loops in Y

Define symplectic action functional on M by

F (γ) =
∫
γ̃ ω

where γ̃ : 2− disc → Y is a disc whose bound-
ary is the image of γ.

If ω is integral, F gives a well defined map
from M to R/Z

If
∫
Zω = 0 for any closed submanifold Z ∼=

S2, the map is in fact well defined into R.
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Symplectic Floer homology is the Morse the-
ory of this function F on the loop space of Y .

It is an analogue of instanton Floer homol-
ogy, which is the Morse theory of the Yang-Mills
functional.
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5. Contact manifolds

α 1-form on (2n+1)-dimensional manifold Y
for which

α ∧ (dα)n 6= 0

A contact structure is the distribution on
Y given by the kernel of α. (Different forms α
give rise to the same distribution)

Contact structures occur on odd-dimensional
manifolds. It is natural to study manifolds with
boundary for which the interior of the manifold
has a symplectic structure and the components
of the boundary have contact structures.

This gives rise to symplectic field theory (as
in Y. Eliashberg’s minicourse).
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Hamiltonian group actions (Workshop 3)

Let M be a symplectic manifold equipped with
a group action preserving the symplectic struc-
ture

e.g. M = Cn, U(1) acts by diagonal multi-
plication

eiθ ∈ U(1) : (z1, . . . , zn) 7→ (eiθz1, . . . , e
iθzn)

Under this action, every element of the Lie
algebra gives rise to a vector field on M .

The action is Hamiltonian if these vector
fields are Hamiltonian vector fields for some func-
tions on M which fit together to give a map
µ : M → Lie(G)
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(If we introduce a basis for Lie(G), the j’th
component of µ is the Hamiltonian function giv-
ing rise to the vector field corresponding to the
j-th component of Lie(G).)

This map is called the moment map.

In addition we require that the moment map
be equivariant with respect to the adjoint action
on Lie(G) (if G is abelian this simply means the
map is invariant under the group action).

The moment map can be used to divide out
the group action to obtain another symplectic
manifold, the symplectic quotient. (If the group
is odd-dimensional e.g. U(1), the topological
quotient by the group action would also be odd-
dimensional and hence could not be symplectic.)
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The symplectic quotient is defined as

Mred = µ−1(0)/G;

this is a smooth manifold if G acts freely on
µ−1(0).

For example, for the diagonal action of U(1)
on Cn the symplectic quotient is complex pro-
jective space CPn−1.

Hamiltonian group actions formed the subject
of a graduate course by L. Jeffrey which was
taught as part of the thematic program.

1.Equivariant cohomology of symplec-
tic manifolds: If a symplectic manifold has a
Hamiltonian group action it is natural to study
its equivariant cohomology

H∗(M ×G EG).

The symplectic form extends naturally to give
a class in equivariant cohomology.
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2. Flat connections on Riemann sur-
faces:

The moduli space of flat connections on a Rie-
mann surface up to equivalence under the ac-
tion of the gauge group (or more precisely the
space of flat connections on a punctured Rie-
mann surface with central holonomy around the
puncture) is a symplectic manifold.

The dimensions of its cohomology groups were
determined by Atiyah and Bott in a seminal
1982 paper.

At this workshop, S. Tolman and J. Weitsman
gave a proof of the formula for the dimensions
of the cohomology groups of this space, using
Morse theory by constructing a perfect Morse
function (one for which the Morse inequalities
are equalities).
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S. Racaniere spoke on the generators of the
cohomology ring of these moduli spaces.

Y.-H. Kiem spoke on the cohomology of these
spaces, relaxing the hypothesis that they must
be smooth manifolds.

A. Szenes spoke on the quantization of these
moduli spaces (i.e. the Verlinde formula).

Flat connections on Riemann surfaces formed
the subject of a graduate course by E. Mein-
renken which was taught as part of the thematic
program.
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3. Toric geometry

A particularly nice class of symplectic mani-
folds equipped with Hamiltonian group actions
are the toric manifolds. These are manifolds of
dimension 2n equipped with a Hamiltonian ac-
tion of U(1)n. The image of the moment map is
a polytope (the Newton polytope). The com-
ponents of the moment map form an integrable
system; the symplectic quotients of a toric man-
ifold is a point.

Several talks treated toric manifolds; M. Abreu
spoke on Kähler metrics on toric manifolds, and
Y. Karshon spoke on geometric quantization of
toric manifolds.
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4. Geometric quantization

In quantum mechanics, we replace the phase
space M (parametrizing position and momen-
tum) by the space of wave functions, the square
integrable functions on the configuration space
(the space parametrizing positions of a particle).

The mathematical generalization of this pro-
cedure is to associate to a symplectic manifold
M the space of sections of a complex line bun-
dle over M (“prequantum line bundle with con-
nection”) which in some way depend on only
half the variables parametrized by M . A nat-
ural way to implement this is to require that
the sections be holomorphic sections of the line
bundle.

Quantization was treated in several talks (Y.
Karshon, G. Landweber, S. Wu, P. Xu).
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5. Morse theory and graphs

Several talks (V. Guillemin, C. Zara; T. Holm)
treated the cohomology of a class of spaces with
group actions known as

Goresky-Kottwitz-MacPherson spaces .

These are spaces equipped with an action of
T = U(1)n for which the one-skeleton is of di-
mension at most 2. (The one-skeleton is defined
to be the space of points x for which the T -orbit
through x has dimension at most 1.)
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6. Group-valued moment map spaces

Several talks (S. Racaniere, A. Alekseev) treated
the group-valued moment map spaces of Alek-
seev, Malkin and Meinrenken. These spaces are
equivalent to spaces with the Hamiltonian ac-
tion of a loop group; they are equipped with
the action of a Lie group G, but the analogue of
the moment map takes values in G itself rather
than in its Lie algebra.

7. Poisson-Lie groups and representa-
tion theory

Several talks (P. Xu, M. Kogan, S. Evens, A.
Alekseev) treated Poisson-Lie groups. In many
cases (e.g. B. Kostant. A. Knutson, R. Brylin-
ski, P. Paradan) the talks proved results in rep-
resentation theory of Lie groups.

29



8. Yang-Baxter equation, R-matrices,
integrable systems

Several talks (A. Alekseev, J. Hurtubise, E.
Markman, R. Donagi) treated R-matrices and
integrable systems associated to them.
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