Transitions: A Secondary Teacher's Perspective

#### Students' futures

The projected destination of students enrolled in Grade 9 in 2000



#### Figure 6: Post-Secondary Plans of 1st New Cohort Students In Grades 10 and 11





Support provided for the elementary/secondary transition

- Student Success Mathematical Literacy, Literacy, Pathways, Community, Culture and Caring
- Learning to 18, School to Work Transitions
- School Plan for Continuous Improvement
- Instructional Intelligence
- Assessment for Learning
- Cooperative Learning
- Technology

# The Literate Graduate



#### and Clarity

V

Communicates Effectively Using Visual Exit Forms

V

Reads for Purpose and Pleasure

V

Thinks Critically V Locates and Accesses

Information From a Variety of Sources

V

Uses Oral Communication Appreciated to Purpose and

### Beliefs and Understandings

All students can learn mathematics -- with enough support, resources and time -- and we must ensure they do.



p. 11

What are math teachers' perceptions of their students' future path in math (at college or univ)?

- No common perception data from Statistics Canada made available last year
- Much speculation and rumour about college and university reality
- Students always come back to say thanks
- Memories of our own experiences while taking our math degrees

What do math teachers actually teach, and why (i.e. how much it diverges from curriculum)

- Seven of the 29 schools in YRDSB have one or two enriched MCB4U courses (AP Calculus) a year
- Textbook (Harcourt, Nelson, McGraw Hill, Pearson) often guides the interpretation of the curriculum at any grade
- Exam sharing shows we're on same page

How do math teachers teach (for instance, do they focus on techniques, or on applications, etc.)

- Grade 11/12 university courses are often taught very procedurally (modelled, shared, guided, independent, practice, practice, practice!)
- Equal weight on techniques and applications broken into four categories of Achievement Chart (Knowledge/Understanding, Application, Thinking, Communication)
- Textbooks are primary resource

## What are the frustrations?

- Misplaced students, idealistic parents putting unrealistic demands on students
- Students sometimes find it difficult to balance work/school/athletic/social obligations
- Students delaying coming in for extra help
- Technology not always available (labs, graphing calculators)

Do math teachers use technology and to what extent? Do they believe it's beneficial for their students' college/univ life?

- Varies greatly within and between schools.
- Perception: technology won't be available for use in most colleges/universities
- Perception: lecture method is primary approach to teaching in universities

### What course(s) do grade 12 students take, and in what numbers?

- Advanced Functions is the 'golden apple' and has significant drop out rates within the first few weeks depending upon teacher
- Some schools have only one section, others have as many as eight
- Data Management varies greatly from school to school (from one to as many as six sections)
- Geometry & Discrete and College Tech sometimes not enough sections to run other times (MGA from one to six, College Tech from none to two)

#### Double Cohort Study – Phase 4 Grade 11 Achievement

| Grade 11<br>Courses              | 2001-2002 | 2002-2003 | 2003-2004 |
|----------------------------------|-----------|-----------|-----------|
| Functions and Relations (U)      | 11.4%     | 11.0%     | 9.2%      |
| Functions (U/C)                  | 20.9%     | 19.7%     | 18.2%     |
| Personal<br>Finance (C)          | 18.6%     | 17.3%     | 16.5%     |
| Math For<br>Everyday Life<br>(W) | 17.0%     | 15.8%     | 15.3%     |

#### Grade 11 Student Achievement



**Double Cohort Study: Phase 4, 2005** 

#### Grade 12 Student Achievement



**Double Cohort Study: Phase 4, 2005** 

## What Factors Contribute Most To Students' Success in Mathematics?

- active participation in meaningful mathematics;
- in-depth understanding of mathematics is supported by active involvement in mathematical modelling, problem solving and reasoning through application
- ample time to perform investigations and to revise work;
- classroom practices that encourage discussion among students and between students and teachers;
- student reflection on their work;
- an appreciation of student diversity.

## What Factors Contribute Most To Students' Success in Mathematics?

- learning experiences that involve a range of activity from short whole-group instruction to longer times engaged in problem solving
- positive student-teacher relationships

• "user-friendly" classroom environments in which prior knowledge is identified and built upon, and where instruction is **developmentally appropriate** 

#### Equity: Developmentally Appropriate

A developmentally appropriate curriculum

- is challenging but attainable for most students of a given age group preparing for a given destination
- allows enough flexibility to respond to inevitable individual variation
- is consistent with the students' ways of thinking and learning

### Double Cohort Study – Phase 4 Grade 11 Enrolment

| Grade 11<br>Courses              | 2001-2002 | 2002-2003 | 2003-2004 |
|----------------------------------|-----------|-----------|-----------|
| Functions and Relations (U)      | 34.3%     | 28%       | 26.8%     |
| Functions (U/C)                  | 26.2%     | 27.4%     | 26.1%     |
| Personal<br>Finance (C)          | 29.6%     | 32.8%     | 34.4%     |
| Math For<br>Everyday Life<br>(W) | 10%       | 11.7%     | 12.7%     |

#### Double Cohort Study – Phase 4 Grade 11 Achievement

| Grade 11<br>Courses              | 2001-2002 | 2002-2003 | 2003-2004 |
|----------------------------------|-----------|-----------|-----------|
| Functions and Relations (U)      | 11.4%     | 11.0%     | 9.2%      |
| Functions (U/C)                  | 20.9%     | 19.7%     | 18.2%     |
| Personal<br>Finance (C)          | 18.6%     | 17.3%     | 16.5%     |
| Math For<br>Everyday Life<br>(W) | 17.0%     | 15.8%     | 15.3%     |

#### PISA 2003: Indices of Student Engagement In Mathematics (15 year olds)

|                                             | Significantly<br>higher than<br>Canadian average | Performing the same as the Canadian average         | Significantly lower<br>than Canadian<br>average |  |
|---------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|--|
| Interest and<br>enjoyment in<br>mathematics |                                                  | ONTARIO<br>NFLD, PEI, NS,<br>NB, QU, MAN, SK,<br>AL | BC                                              |  |
| Belief in<br>usefulness of<br>mathematics   | NS, QU                                           | NFLD, PEI, MAN,<br>SK, AL                           | ONTARIO<br>NB, BC                               |  |
| Mathematics confidence                      | QU, AL                                           | NFLD, BC                                            | <b>ONTARIO</b><br>PEI, NS, NB, MAN,<br>SK       |  |
| Perceived ability in mathematics            | QU, AL                                           | NFLD, PEI, NS,<br>NB, SK                            | ONTARIO<br>MAN, BC                              |  |
| Mathematics<br>anxiety                      | ONTARIO                                          | NB, QU, MAN, SK,<br>AL, BC                          | NFLD, PEI, NS                                   |  |

#### Ontario Applicant Data 2001-2004



### Equity

### Students can be considered to be "at-risk" when they are in peril of not reaching their learning potential.

**CMESG Work Group** 

#### Student Destinations 1999-2000 Cohort to Fall 2004



#### Students' futures

The projected destination of students enrolled in Grade 9 in 2000



#### Undergraduate Degrees Statistics Canada

|                                                             | 1999   | 2003   |
|-------------------------------------------------------------|--------|--------|
| Total, instructional programs                               | 173575 | 201675 |
| Education                                                   | 22290  | 24930  |
| Visual and performing arts, and communications technologies | 5200   | 7035   |
| Humanities                                                  | 19590  | 22255  |
| Social and behavioural sciences, and law                    | 36700  | 38680  |
| Business, management and public administration              | 31630  | 42470  |
| Physical and life sciences, and technologies                | 14605  | 14750  |
| Mathematics, computer and information sciences              | 7710   | 10515  |
| Architecture, engineering and related technologies          | 12800  | 17330  |
| Agriculture, natural resources and conservation             | 3825   | 3795   |
| Health, parks, recreation and fitness                       | 16920  | 18445  |
| Personal, protective and transportation services            | 90     | 245    |
| Other instructional program                                 | 2,210  | 1,230  |

Students' attitudes toward mathematics have a great effect on student achievement.

- Students who enjoy mathematics tend to perform well in their mathematics course work and are more likely to enrol in the more advanced mathematics courses.
- Students who dislike mathematics tend not to do well in these classes, and/or do not attempt the more advanced mathematics classes in secondary school.

Students develop positive attitudes when they

- make mathematical conjectures;
- make breakthroughs as they solve problems;
- see connections between important ideas.

Students with a productive attitude

- find sense in mathematics,
- perceive it as both useful and worthwhile,
- believe that steady effort in learning mathematics pays off
- view themselves as effective learners and doers of mathematics.

Students experience frustration when they are not making progress towards solving a problem. Therefore, it is important that instruction provide appropriately challenging problems so students can learn and establish the norm of perseverance for successful problem solving.