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ABSTRACT

In this paper, we conduct a comprehensive study of tests of mean-variance spanning. We

provide both a comparison and a geometrical interpretation of three asymptotic tests (likeli-

hood ratio, Wald, and Lagrange multiplier) of mean-variance spanning under the regression

based framework of Huberman and Kandel (1987). For the case of normality, we provide the

exact distributions and a comprehensive power analysis of the three tests. For the general

case, we provide the GMM version of the spanning tests and evaluate their performance using

simulation. In addition, we compare the performance of the spanning tests under the regres-

sion approach with those under the stochastic discount factor approach. Our results suggest

that the two approaches have similar properties when returns are normally distributed but

the regression approach is superior to the stochastic discount factor approach when returns

follow a multivariate Student-t distribution.



In portfolio analysis, one is often interested in finding out whether one set of risky assets

can improve the investment opportunity set of another set of risky assets. If an investor

chooses portfolios based on mean and variance, then the question becomes whether adding

a new set of risky assets can allow the investor to improve the minimum-variance frontier

from a given set of risky assets. This question was first addressed in the literature by

Huberman and Kandel (1987, HK hereafter) in which they proposed a multivariate test of

the hypothesis that the minimum-variance frontier of a set ofK benchmark assets is the same

as the minimum-variance frontier of the K benchmark assets plus a set of N additional test

assets. Subsequent to HK’s study, different tests were developed in the finance literature to

address the question of mean-variance spanning in different applications. Examples include

Ferson, Foerster, and Keim (1993), DeSantis (1993), Bekaert and Urias (1996), and De Roon,

Nijman, and Werker (2001).

In this paper, we aim at improving our understanding of various tests of mean-variance

spanning. HK provide a likelihood ratio test of spanning and derive its finite sample distri-

bution under normality assumption. However, unlike the case of testing the CAPM as in

Jobson and Korkie (1982) and Gibbons, Ross, and Shanken (1989, GRS hereafter), the like-

lihood ratio test is in general not the uniformly most powerful invariant test for the case of

test of spanning. Therefore, it is important not to consider just the likelihood ratio test, but

also consider other tests of spanning. Two alternative tests that we consider are the Wald

test and the Lagrange multiplier test. We compare their performance with the likelihood

ratio test and present the geometrical interpretations of all three tests in terms of the ex post

minimum-variance frontier of the K benchmark assets and that of the entire set of N +K

assets. Under the normality assumption, we present the small sample distribution for all of

the three tests and provide a complete analysis of their power under alternative hypotheses.

In addition, we also relate the power of these tests to the economic significance of departure

from the spanning hypothesis. We find that the power of these three tests does not always

align with the economic significance of the difference between the two minimum-variance

frontiers. Under the nonnormality assumption, we conduct our analysis using simulation
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and reach a similar conclusion.

Recently, Ferson (1992), DeSantis (1993), and Bekaert and Urias (1996) recast the concept

of mean-variance spanning in the stochastic discount factor (SDF) framework and provide

various Generalized Method of Moments (GMM) based tests of spanning. As a further

development, we provide a comparison of the newer SDF approach with the older regression

based approach, in terms of both the size and power. Such a comparison offers insights as

to which of these two different approaches is more reliable in practice. We find the GMM

spanning tests under the regression approach are superior to the corresponding tests under

the SDF approach when returns exhibit conditional heteroskedasticity.

The rest of the paper is organized as follows. The next section discusses the concept of

spanning and the regression based approach of tests of spanning. Section II provides a com-

prehensive power analysis of various regression based spanning tests. Section III discusses

how to generalize these spanning tests when the assets returns are not multivariate nor-

mally distributed. Section IV introduces the stochastic discount factor approach of tests of

spanning and compares their performance with the regression based tests. The final section

concludes our findings and the Appendix contains proofs of all propositions.

I. Regression Based Tests of Spanning

A. Mean-Variance Spanning

The concept of mean-variance spanning is simple. We say a set of K risky assets spans a

larger set ofN+K risky assets if the minimum-variance frontier of theK assets is identical to

the minimum-variance frontier of the K assets plus an additional N assets. In the literature,

the first set of K risky assets is often called the benchmark assets and the second set of

N risky assets is called the test assets. When there exists a risk-free asset and unlimited

lending and borrowing at the risk-free rate is allowed, then investors who care about the

mean and variance of their portfolios will only be interested in the tangency portfolio of the
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risky assets (i.e., the one that maximizes the Sharpe ratio). In that case, investors are only

concerned with whether the tangency portfolio from using K benchmark risky assets is the

same as the one from using all N +K risky assets. However, when a risk-free asset does not

exist, or there is no unlimited risk-free lending and borrowing at the same risk-free rate, then

investors instead are interested in whether the two minimum-variance frontiers are identical.

The answer to this question allows us to address two interesting questions in finance. The

first question asks whether, conditional on a given set of N + K assets, the investor can

maximize his utility by holding just a smaller set of K assets instead of the complete set.

This question is closely related to the concept of K-fund separation and has implications for

efficient portfolio management. The second question asks whether an investor, conditional

on having a portfolio of K assets, can benefit by investing in a new set of N assets. This

latter question addresses the benefits of diversification and is particularly relevant in the

context of international portfolio management when the K benchmark assets are domestic

assets whereas the N test assets are investments in foreign markets.

HK first discuss the question of spanning and formalize it as a statistical test. Define

Rt = [R′
1t, R

′
2t]

′ as the raw returns on N +K risky assets at time t, where R1t is a K-vector

of the returns on the K benchmark assets and R2t is an N -vector of the returns on the N

test assets.1 Define the expected returns on the N +K assets as

µ = E[Rt] ≡
[
µ1

µ2

]
, (1)

and the covariance matrix of the N +K risky assets as

V = Var[Rt] ≡
[
V11 V12

V21 V22

]
, (2)

where V is assumed to be nonsingular. By projecting R2t on R1t, we have

R2t = α+ βR1t + εt, (3)

with E[εt] = 0N and E[εtR
′
1t] = ON×K , where 0N is an N -vector of zeros and ON×K is an

N by K matrix of zeros. It is easy to show that α and β are given by α = µ2 − βµ1 and

1Note that we can also define Rt as total returns or excess returns (in excess of risk-free lending rate).
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β = V21V
−1
11 . Let δ = 1N − β1K where 1N is an N -vector of ones. HK provide the necessary

and sufficient conditions for spanning in terms of restrictions on α and δ as

H0 : α = 0N , δ = 0N . (4)

To understand why (4) implies mean-variance spanning, we observe that when (4) holds,

then for every test asset, we can find a portfolio of the K benchmark assets that has the

same mean (since α = 0N and β1K = 1N) but a lower variance than the test asset (since

R1t and εt are uncorrelated and Var[εt] is positive definite). Hence, the N test assets are

dominated by the K benchmark assets.

To facilitate later discussion and to gain a further understanding of what the two con-

ditions α = 0N and δ = 0N represent, we consider two portfolios on the minimum-variance

frontier of the N +K assets with their weights given by

w1 =
V −1µ

1′N+KV
−1µ

, (5)

w2 =
V −11N+K

1′N+KV
−11N+K

. (6)

FromMerton (1972) and Roll (1977), we know that the first portfolio is the tangency portfolio

when the tangent line starts from the origin, and the second portfolio is the global minimum-

variance portfolio.2

Denote Σ = V22 − V21V
−1
11 V12 and Q = [ON×K , IN ] where IN is an N by N identity

matrix. Using the partitioned matrix inverse formula, the weights of the N test assets in

these two portfolios can be obtained as

Qw1 =
QV −1µ

1′N+KV
−1µ

=
[−Σ−1β, Σ−1]µ

1′N+KV
−1µ

=
Σ−1(µ2 − βµ1)

1′N+KV
−1µ

=
Σ−1α

1′N+KV
−1µ

, (7)

and

Qw2 =
QV −11N+K

1′N+KV
−11N+K

=
[−Σ−1β, Σ−1]1N+K

1′N+KV
−11N+K

=
Σ−1(1N − β1K)

1′N+KV
−11N+K

=
Σ−1δ

1′N+KV
−11N+K

. (8)

2In defining w1, we implicitly assume 1′N+KV
−1µ �= 0 (i.e., the expected return of the global minimum-

variance portfolio is not equal to zero.) If not, we can pick the weight of another frontier portfolio to be
w1.
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From these two expressions, we can see that testing α = 0N is a test of whether the tangency

portfolio has zero weights in the N test assets, and testing δ = 0N is a test of whether the

global minimum-variance portfolio has zero weights in the test assets. When there are two

distinct minimum-variance portfolios that have zero weights in the N test assets, then by

the two-fund separation theorem, we know that every portfolio on the minimum-variance

frontier of the N +K assets will also have zero weights in the N test assets.3

B. Multivariate Tests of Mean-Variance Spanning

To test (4), additional assumptions are needed. The popular assumption in the literature is

to assume α and β are constant over time. Under this assumption, α and β can be estimated

by running the following regression

R2t = α + βR1t + εt, t = 1, 2, . . . , T, (9)

where T is the length of time series. HK’s regression based approach is to test (4) in regression

(9) by using the likelihood ratio test.

For notational brevity, we use the matrix form of model (9) in what follows:

R = XB + E, (10)

where R is a T ×N matrix of R2t, X is a T × (K+1) matrix with its typical row as [1, R′
1t],

B = [α, β ]′, and E is a T × N matrix with ε′t as its typical row. As usual, we assume

T ≥ N +K +1 and X ′X is nonsingular. For the purpose of obtaining exact distributions of

the test statistics, we assume that conditional on R1t, the disturbances εt are independent

and identically distributed as multivariate normal with mean zero and variance Σ.4 This

assumption will be relaxed later in the paper.

3Instead of testing H0 : α = 0N and δ = 0N , we can generalize the approach of Jobson and Korkie (1983)
and Britten-Jones (1999) to test directly Qw1 = 0N and Qw2 = 0N .

4Note that we do not require Rt to be multivariate normally distributed; the distribution of R1t can be
time-varying and arbitrary. We only need to assume that conditional on R1t, R2t is normally distributed.
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The likelihood ratio test of (4) compares the likelihood functions under the null and the

alternative. The unconstrained maximum likelihood estimators of B and Σ are

B̂ ≡ [ α̂, β̂ ]′ = (X ′X)−1(X ′R), (11)

Σ̂ =
1

T
(R−XB̂)′(R−XB̂). (12)

Under the normality assumption, we have

vec(B̂′) ∼ N(vec(B′), (X ′X)−1 ⊗ Σ), (13)

T Σ̂ ∼ WN(T −K − 1,Σ), (14)

where WN(T −K − 1,Σ) is the N -dimensional central Wishart distribution with T −K − 1

degrees of freedom and covariance matrix Σ. Define Θ = [α, δ ]′, the null hypothesis (4) can

be written as H0 : Θ = O2×N . Since Θ = AB − C where

A =

[
1 0′K
0 −1′K

]
, (15)

C =

[
0′N
−1′N

]
, (16)

the maximum likelihood estimator of Θ is given by Θ̂ ≡ [ α̂, δ̂ ]′ = AB̂ − C. Define

Ĝ = TA(X ′X)−1A′ =
[
1 + µ̂′

1V̂
−1
11 µ̂1 µ̂′

1V̂
−1
11 1K

µ̂′
1V̂

−1
11 1K 1′KV̂

−1
11 1K

]
(17)

where µ̂1 =
1
T

∑T
t=1R1t and V̂11 = 1

T

∑T
t=1(R1t − µ̂1)(R1t − µ̂1)

′, it can be verified that

vec(Θ̂′) ∼ N(vec(Θ′), (Ĝ/T )⊗ Σ). (18)

Let Σ̃ be the constrained maximum likelihood estimator of Σ and U = |Σ̂|/|Σ̃|, the

likelihood ratio test of H0 : Θ = O2×N is given by

LR = −T ln(U)
A∼ χ2

2N . (19)

It should be noted that numerically, one does not need to do the constrained estimation to

obtain the likelihood ratio test statistic. From Seber (1984, p.410), we have

Σ̃− Σ̂ = Θ̂′Ĝ−1Θ̂ (20)
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and hence 1/U can be obtained from the unconstrained estimate alone as

1

U
=

|Σ̃|
|Σ̂| = |Σ̂−1Σ̃| = |Σ̂−1(Σ̂ + Θ̂′Ĝ−1Θ̂)| = |IN + Σ̂−1Θ̂′Ĝ−1Θ̂| = |I2 + ĤĜ−1|, (21)

where

Ĥ = Θ̂Σ̂−1Θ̂′ =
[
α̂′Σ̂−1α̂ α̂′Σ̂−1δ̂

α̂′Σ̂−1δ̂ δ̂′Σ̂−1δ̂

]
. (22)

Denoting λ1 and λ2 as the two eigenvalues of ĤĜ−1 where λ1 ≥ λ2 ≥ 0, we have

1/U = (1 + λ1)(1 + λ2) and the likelihood ratio test can then be written as

LR = T
2∑

i=1

ln(1 + λi). (23)

The two eigenvalues of ĤĜ−1 are of great importance since all invariant tests of (4) are

functions of these two eigenvalues (Theorem 10.2.1 of Muirhead (1982)).

Besides the likelihood ratio test, there are two other popular asymptotic tests: the Wald

test and the Lagrange multiplier test. From Berndt and Savin (1977), the Wald test is given

by

W = T (λ1 + λ2)
A∼ χ2

2N . (24)

and the Lagrange multiplier test is given by

LM = T
2∑

i=1

λi

1 + λi

A∼ χ2
2N . (25)

Note that although LR, W , and LM all have an asymptotic χ2
2N distribution, Berndt and

Savin (1977) and Breusch (1979) show that we must haveW ≥ LR ≥ LM in finite samples.5

Therefore, using the asymptotic distribution to make an acceptance/rejection decision, the

three tests could give conflicting results, with LM favoring acceptance and W favoring

rejection.

5The three test statistics can be modified to have better small sample properties. The modified LR
statistic is obtained by replacing T by T −K − (N +1)/2, the modified W statistic is obtained by replacing
T by T −K −N + 1, and the modified LM statistic is obtained by replacing T by T −K + 1.

7



Note also that unlike the case of testing the mean-variance efficiency of a given portfolio,

the three tests are not increasing transformation of each other except for the case of N = 1,6

so they are not equivalent tests in general. It turns out that none of the three tests are

uniformly most powerful invariant tests when N ≥ 2, and which test is more powerful

depends on the choice of an alternative hypothesis. Therefore, it is important for us not just

to consider the likelihood ratio test but also the other two.

C. Small Sample Distributions of Spanning Tests

As demonstrated by GRS and others, asymptotic tests could be grossly misleading in finite

samples. In this section, we provide finite sample distribution of the three tests under the

null hypothesis.7 Starting with the likelihood ratio test, HK and Jobson and Korkie (1989)

show that the exact distribution of the likelihood ratio test under the null hypothesis is given

by8 (
1

U
1
2

− 1

)(
T −K −N

N

)
∼ F2N,2(T−K−N). (26)

Although this F -test has been used to test the spanning hypothesis in the literature for

N = 1, it should be emphasized that this F -test is only valid when N ≥ 2.9 When N = 1,

the correct F -test should be(
1

U
− 1

)(
T −K − 1

2

)
∼ F2,T−K−1. (27)

For the special case ofN = 1, the exact distribution of the Wald and Lagrange multiplier tests

can be obtained from the F -test in (27) since all three tests are increasing transformations

6When N = 1, we have λ2 = 0 and hence LR = T ln(1 + W
T ) and LM =W/(1 + W

T ).
7The small sample version of the likelihood ratio, the Wald and the Lagrange multiplier tests are known

as the Wilk’s U , the Lawley-Hotelling trace, and the Pillai trace, respectively, in the multivariate statistics
literature.

8HK’s expression of the F -test contains a typo. Instead of U
1
2 , it was misprinted as U . This mistake was

unfortunately carried over to later studies such as Bekaert and Urias (1996) and Errunza, Hogan, and Hung
(1999), but the F -test given by Jobson and Korkie (1989) is correct.

9Although HK assume K ≥ 2 in their derivation, the test is nevertheless valid statistically for the case
of K = 1. When K = 1, it is a joint test of whether all the test assets have the same expected return as
the benchmark asset and whether the benchmark asset is the global minimum-variance portfolio of all the
assets.
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of each other.

For N ≥ 2, the exact distribution of the Wald test under the null hypothesis is given in

Hotelling (1951) and Anderson (1984)

P [λ1 + λ2 ≤ w]

= I w
2+w

(N − 1, T −K −N)−
B
(

1
2
, T−K

2

)
B
(

N
2
, T−K−N+1

2

)(1 + w)−(T−K−N
2

)I
( w

2+w )
2

(
N − 1

2
,
T −K −N

2

)
, (28)

where B(·, ·) is the beta function, and Ix(·, ·) is the incomplete beta function.

For the exact distribution of the Lagrange multiplier test for N ≥ 2, there is no easy

expression available in the literature.10 Therefore, we provide our own expression here. Let

ξ1 = λ1/(1 + λ1) and ξ2 = λ2/(1 + λ2), we have,

P [ξ1 + ξ2 ≤ v] = I v
2
(N − 1, T −K −N + 1)−

∫ v2

4

max[0,v−1] u
N−3

2 (1− v + u)
T−K−N

2 du

2B(N − 1, T −K −N + 1)
. (29)

Proof of this expression is given in the appendix.

Under the null hypothesis, the exact distributions of all three tests depend only on N and

T −K but are independent of the realizations of R1t. Therefore, under the null hypothesis,

the unconditional distributions of the three test statistics are the same as their distributions

when unconditional on R1t. In Table I, we provide the actual probabilities of rejection of the

three tests under the null hypothesis when the rejection is based on the 95% percentile of

their asymptotic distribution of χ2
2N . From Table I, we can see that the actual probabilities

of rejection can differ quite substantially from the asymptotic p-value of 5%, especially when

N and K are large relative to T . For example, when N = 25, even when T is as high as

240, the probabilities of rejection can still be two to four times the size of the test for the

Wald and the likelihood ratio tests. Therefore, using asymptotic distributions could lead to

a severe over-rejection problem for the Wald and the likelihood ratio tests. For the Lagrange

10Existing expressions in Mikhail (1965) and Pillai and Jayachandran (1967) require summing up a large
number of terms and only work for the special case that both N and T −K are odd numbers.
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multiplier test, the actual probabilities of rejection are actually quite close to the size of the

test, except when T is very small. If one wishes to use an asymptotic spanning test, the

Lagrange multiplier test appears to be preferable to the other two in terms of the size of the

test.

Table I about here

D. The Geometry of Spanning Tests

While it is important to have finite sample distributions of the three tests, it is equally impor-

tant to develop a measure that allows one to examine the economic significance of departures

from the null hypothesis. Fortunately, all three tests have nice geometrical interpretations.

To prepare for our presentation of the geometry of the three test statistics, we introduce

three constants â = µ̂′V̂ −1µ̂, b̂ = µ̂′V̂ −11N+K , ĉ = 1′N+KV̂
−11N+K , where µ̂ = 1

T

∑T
t=1 Rt

and V̂ = 1
T

∑T
t=1(Rt − µ̂)(Rt − µ̂)′. It is well known that these three constants determine

the location of the ex post minimum-variance frontier of the N + K assets. Similarly, the

corresponding three constants for the mean-variance efficiency set of just the K benchmark

assets are â1 = µ̂′
1V̂

−1
11 µ̂1, b̂1 = µ̂′

1V̂
−1
11 1K , ĉ1 = 1′KV̂

−1
11 1K . Using these constants, we can

write

Ĝ =

[
1 + â1 b̂1
b̂1 ĉ1

]
. (30)

The following lemma relates the matrix Ĥ to these two sets of efficiency constants.

Lemma 1 Let ∆â = â− â1, ∆b̂ = b̂− b̂1, and ∆ĉ = ĉ− ĉ1, we have

Ĥ =

[
∆â ∆b̂

∆b̂ ∆ĉ

]
. (31)

Since Ĥ summarizes the marginal contribution of the N test assets to the efficient set of the

K benchmark assets, Jobson and Korkie (1989) call this matrix the “marginal information
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matrix.” With this lemma, we have

U =
1

|I2 + ĤĜ−1| =
|Ĝ|

|Ĝ+ Ĥ| =
(1 + â1)ĉ1 − b̂21

(1 + â)ĉ− b̂2
=
ĉ1 + d̂1

ĉ+ d̂
=

(
ĉ1
ĉ

)(
1 + d̂1

ĉ1

1 + d̂
ĉ

)
, (32)

where d̂ = âĉ− b̂2 and d̂1 = â1ĉ1 − b̂21. Therefore, the F -test of (26) can be written as

F =

(
T −K −N

N

)(
1

U
1
2

− 1

)
=

(
T −K −N

N

)
( √

ĉ√
ĉ1

)


√
1 + d̂

ĉ√
1 + d̂1

ĉ1


− 1


 . (33)

In Figure 1, we plot the ex post minimum-variance frontiers of the K benchmark assets as

well as the one of all N+K assets in the (σ̂, µ̂) space. Denote g1 the ex post global minimum-

variance portfolio of the K assets and g the ex post global minimum-variance portfolio of

all N + K assets. It is well known that the standard deviation of g1 and g are 1/
√
ĉ1 and

1/
√
ĉ, respectively. Therefore, the first ratio

√
ĉ/
√
ĉ1 is simply the ratio of the standard

deviation of g1 to that of g, and this ratio is always greater than or equal to one. To obtain

an interpretation of the second ratio
√

1 + d̂
ĉ

/√
1 + d̂1

ĉ1
, we note that the absolute value of

the slopes of the asymptotes to the efficient set hyperbolae of the K benchmark assets and of

all N +K assets are

√
d̂1/ĉ1 and

√
d̂/ĉ, respectively. Therefore,

√
1 + d̂1

ĉ1
is the length of the

asymptote to the hyperbola of the K benchmark assets from σ̂ = 0 to σ̂ = 1, and
√

1 + d̂
ĉ

is the corresponding length of the asymptote to the hyperbola of the N +K assets. Since

the ex post frontier of the N +K assets dominates the ex post frontier of the K benchmark

assets, the ratio
√

1 + d̂
ĉ

/√
1 + d̂1

ĉ1
must be greater than or equal to one. In Figure 1, we

can see that for N > 1, the F -test of (26) can be geometrically represented as11

F =

(
T −K −N

N

)[(
OD

OC

)(
AH

BF

)
− 1

]
. (35)

Figure 1 about here

11For N = 1, the F -test of (27) can be geometrically represented as

F =
(
T −K − 1

2

)[(
OD

OC

)2 (
AH

BF

)2

− 1
]
. (34)
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Under the null hypothesis, the two minimum-variance frontiers are ex ante identical, so

the two ratios
√
ĉ/
√
ĉ1 and

√
1 + d̂

ĉ

/√
1 + d̂1

ĉ1
should be close to one and the F -statistic

should be close to zero. When either g1 is far enough from g or the slopes of the asymptotes

to the two hyperbolae are very different, we get a large F -statistic and we will reject the null

hypothesis of spanning.

For the Wald and the Lagrange multiplier tests, mean-variance spanning is tested by

examining different parts of the two minimum-variance frontiers. To obtain a geometrical

interpretation of these two test statistics, we define θ̂1(r) and θ̂(r) as the slope of the tangent

lines to the sample frontier of the K benchmark assets and of all the N +K assets, respec-

tively, when the tangent lines have a y-intercept of r. Also denote µ̂g1 = b̂1/ĉ1 and µ̂g = b̂/ĉ

as the sample mean of the ex post global minimum-variance portfolio of the K benchmark

assets and of all N+K assets, respectively. Using these definitions, we show in the appendix

that the Wald and Lagrange multiplier tests can be represented geometrically as12

λ1 + λ2 =
ĉ− ĉ1
ĉ1

+
θ̂2(µ̂g1)− θ̂2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

=

(
OD

OC

)2

− 1 +

(
BE

BF

)2

− 1 (36)

and

λ1

1 + λ1
+

λ2

1 + λ2
=
ĉ− ĉ1
ĉ

+
θ̂2(µ̂g)− θ̂2

1(µ̂g)

1 + θ̂2(µ̂g)
= 1−

(
OC

OD

)2

+ 1−
(
AG

AH

)2

. (37)

From these two expressions and Figure 1, we can see that both the Wald and the Lagrange

multiplier test statistics are each the sum of two quantities. The first quantity measures

how close the two ex post global minimum-variance portfolios g1 and g are, and the second

quantity measures how close together the two tangency portfolios are. However, there is a

subtle difference between the two test statistics. For the Wald test, g1 is the reference point

and the test measures how close the sample frontier of the N +K assets is to g1 in terms of

the increase in the variance of going from g to g1, and in terms of the improvement of the

square of the slope of the tangent line from introducing N additional test assets, with µ̂g1 as

12Note that θ̂21(µ̂g1) = d̂1/ĉ1 and θ̂2(µ̂g) = d̂/ĉ and they are just the square of the slope of the asymptote
to the efficient set hyperbolae of the K benchmark assets and of all N +K assets, respectively.
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the y-intercept of the tangent line. For the Lagrange multiplier test, g is the reference point

and the test measures how close the sample frontier of the K assets is to g in terms of the

reduction in the variance of going from g1 to g, and in terms of the reduction of the square of

the slope of the tangent line when using only K benchmark assets instead of all the assets,

with µ̂g as the y-intercept of the tangent line. Such a difference is due to the Wald test being

derived under the unrestricted model but the Lagrange multiplier test being derived under

the restricted model.

II. Power Analysis of Spanning Tests

A. Single Test Asset

In the mean-variance spanning literature, there are many applications and studies of HK’s

likelihood ratio test. However, not much has been done on the power of this test. In fact,

GRS consider the lack of power analysis as a drawback of HK’s test of spanning. Since

the likelihood ratio test is not in general the uniformly most powerful invariant test, it is

important for us also to understand the power of other tests and compare their power.

We should first emphasize that although in finite samples we have the inequality W ≥
LR ≥ LM , this inequality by no means implies the Wald test is more powerful than the

other two tests. This is because the inequality holds even when the null hypothesis is

true. Hence, the inequality simply suggests that the tests have different sizes when we use

their asymptotic distribution of χ2
2N . In evaluating the power of these three tests, it is

important for us to ensure that all of them have the correct size under the null hypothesis.

Therefore, the acceptance/rejection decisions of the three tests must be based on their exact

distributions but not on the asymptotic distribution of χ2
2N . It also deserves emphasis that

the distributions of the three test statistics under the alternative are conditional on Ĝ, i.e.,

conditional on the realizations of the ex post frontier of K benchmark assets. Thus, similar

to GRS, we study the power functions of the three tests conditional on a given value of Ĝ,
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not the unconditional power function.

When there is only one test asset (i.e., N = 1), all three tests are increasing transforma-

tions of the F -test in (27). For this special case, the power analysis is relatively simple to

perform because it can be shown that this F -test has the following noncentral F -distribution

under the alternative hypothesis(
1

U
− 1

)(
T −K − 1

2

)
∼ F2,T−K−1(Tω), (38)

where Tω is the noncentrality parameter and ω = (Θ′Ĝ−1Θ)/σ2, with σ2 representing the

variance of the residual of the test asset. Geometrically, ω can be represented as13

ω =

[
c− c1
ĉ1

+
θ2(µ̂g1)− θ2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

]
, (39)

where c1 = 1′KV
−1
11 1K and c = 1′N+KV

−11N+K are the population counterparts of the efficient

set constants ĉ1 and ĉ, and θ1(µ̂g1) and θ(µ̂g1) are the slope of the tangent lines to the ex

ante frontiers of the K benchmark assets, and of all N + K assets, respectively, with the

y-intercept of the tangent lines as µ̂g1.

In Figure 2, we present the power of the F -test as a function of ω∗ = Tω/(T −K−1) for

T −K = 60, 120, and 240, when the size of the test is 5%. It shows that the power function

of the F -test is an increasing function of T−K and ω∗. Figure 2 allows us to determine what

level of ω∗ we need to reject the null hypothesis with a certain probability. For example, if we

wish the F -test to have at least a 50% probability of rejecting the spanning null hypothesis,

then we need ω∗ to be greater than 0.089 for T −K = 60, 0.043 for T −K = 120, and 0.022

for T −K = 240.

Figure 2 about here

Note that ω is the sum of two terms. The first term measures how close the ex ante

global minimum-variance portfolios of the two frontiers are in terms of the reciprocal of their

13The derivation of this expression is similar to that of (36) and therefore not provided.
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variances. The second term measures how close the ex ante tangency portfolios (when the

tangent lines have a y-intercept of µ̂g1) of the two frontiers are in terms of the square of the

slope of their tangent lines.

In determining the power of the test, the distance between the two global minimum-

variance portfolios is in practice a lot more important than the distance between the two

tangency portfolios. We provide an example to illustrate this. Consider the case of two

benchmark assets (i.e., K = 2), chosen as the equally weighted and value-weighted market

portfolio of the NYSE.14 Using monthly returns from 1926/1–1998/12, we estimate µ̂1 and V̂11

and we have µ̂g1 = b̂1/ĉ1 = 0.0079, σ̂g1 = 1/
√
ĉ1 = 0.049, and θ̂1(µ̂g1) = 0.0875. We plot the

ex post minimum- variance frontier of these two benchmark assets in Figure 3. Suppose we

take this frontier as the ex ante frontier of the two benchmark assets and consider the power

of the F -test for two different cases. In the first case, we consider a test asset that slightly

reduces the standard deviation of the global minimum-variance portfolio from 4.9%/month

to 4.5%/month. This case is represented by the dotted frontier in Figure 3. Although

geometrically this asset does not improve the opportunity set of the two benchmark assets

by much, the ω for this test asset is 0.1886 (with 0.1838 coming from the first term). From

Figure 2, we can see that this allows us to reject the null hypothesis with a probability of

0.86 for T −K = 60, and the probability of rejection goes up to almost one for T −K = 120

and 240. In the second case, we consider a test asset that does not reduce the variance of

the global minimum-variance portfolio but doubles the slope of the asymptote of the frontier

from 0.0875 to 0.175. This case is represented by the outer solid frontier in Figure 3. While

economically this test asset represents a great improvement in the opportunity set, its ω is

only 0.0228 and the F -test does not have much power to reject the null hypothesis. From

Figure 2, we can see that the probability of rejecting the null hypothesis is only 0.16 for

T −K = 60, 0.29 for T −K = 120, and 0.54 for T −K = 240.

It is easy to explain why the F -test has strong power to reject the spanning hypothesis

14This example was also used by Kandel and Stambaugh (1989).
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for a test asset that can improve the variance of the global minimum-variance portfolio but

little power for a test asset that can only improve the tangency portfolio. This is because

the sampling error of the former is in practice much less than that of the latter.15 The first

term of ω involves c − c1 = 1′N+KV
−11N+K − 1′KV

−1
11 1K which is determined by V but not

µ. Since estimates of V are in general a lot more accurate than estimates of µ, even a small

difference in c − c1 can be detected and hence the test has strong power to reject the null

hypothesis when c �= c1. However, the second term of ω involves θ2(µ̂g1)− θ2
1(µ̂g1), which is

difficult to estimate accurately as it is determined by both µ and V . Therefore, even when

we observe a large difference in the sample measure θ̂2(µ̂g1)− θ̂2
1(µ̂g1), it is possible that such

a difference is due to sampling errors rather than due to a genuine difference. As a result,

the spanning test has little power against alternatives that only display differences in the

tangency portfolio but not in the global minimum-variance portfolio.

Figure 3 about here

B. Multiple Test Assets

The calculation of the power of the spanning tests is an extremely difficult task for N > 1.

For example, even though the F -test in (26) has a central F -distribution under the null, it

does not have a noncentral F - distribution under the alternatives. To study the power of the

three tests for N > 1, we need to understand the distribution of the two eigenvalues, λ1 and

λ2, of the matrix ĤĜ−1 under the alternatives. In this subsection, we provide first the exact

distribution of λ1 and λ2 under the alternative hypothesis, then a simulation approach for

computing the power of the three tests in small samples, and finally examples illustrating

the power of the three tests under various alternatives.

Denote ω1 ≥ ω2 ≥ 0 the two eigenvalues of HĜ−1 where H = ΘΣ−1Θ′ is the population

counterpart of Ĥ. In the appendix, we show that the joint density of λ1 and λ2 can be

15Due to the imprecision of using µ̂ as an estimate of expected return, Jorion (1985) advocates the use of a
shrinkage estimator that relies heavily on the sample mean of the ex post global minimum-variance portfolio.
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written as

f(λ1, λ2) = e−
T (ω1+ω2)

2 1F1

(
T −K + 1

2
;
N

2
;
D

2
, L(I2 + L)−1

)
×

N − 1

4B(N, T −K −N)

[
2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2

]
(λ1 − λ2), (40)

for λ1 ≥ λ2 ≥ 0, where L = Diag(λ1, λ2), 1F1 is the hypergeometric function with two matrix

arguments, and D = Diag(Tω1, Tω2). Under the null hypothesis, the joint density function

of λ1 and λ2 simplifies to

f(λ1, λ2) =
N − 1

4B(N, T −K −N)

[
2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2

]
(λ1 − λ2). (41)

To understand why λ1 and λ2 are essential in testing the null hypothesis, note that the

null hypothesis H0 : Θ = O2×N can be equivalently written as H0 : ω1 = ω2 = 0. This is

because HĜ−1 is a zero matrix if and only if H is a zero matrix, and this is true if and only if

Θ = O2×N since Σ is nonsingular. Therefore, tests ofH0 can be constructed using the sample

counterparts of ω1 and ω2, i.e., λ1 and λ2. In theory, distributions of all functions of λ1 and

λ2 can be obtained from their joint density function (40). However, the resulting expression

is numerically very difficult to evaluate under alternative hypotheses because it involves the

evaluation of a hypergeometric function with matrix arguments. Instead of using the exact

density function of λ1 and λ2, the following proposition helps us to obtain the small sample

distribution of functions of λ1 and λ2 by simulation.

Proposition 1: λ1 and λ2 have the same distribution as the eigenvalues of AB−1 where

A ∼W2(N, I2, D) and B ∼W2(T −K −N + 1, I2), independent of A.

With this proposition, we can simulate the exact sample distribution of any functions of

λ1 and λ2 as long as we can generate two random matrices A and B from the noncentral and

central Wishart distributions, respectively. In the proof of Proposition 2 in the appendix,

we give details on how to do so by drawing a few observations from the Chi-square and the

standard normal distributions.
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Before getting into the specific results, we first make some general observations on the

powers of the three tests. It can be shown that the power of the three tests are monotonically

increasing function in Tω1 and Tω2.
16 This means that for fixed ω1 and ω2, we have the

powers of the three tests as increasing functions of T , which is expected. The more interesting

question is how the powers of these tests are determined for a fixed T . For such an analysis,

we need to understand what the two eigenvalues of HĜ−1, ω1 and ω2, represent. The proof

of Lemma 1 works also for the population counterparts of Ĥ , so we can write

H =

[
∆a ∆b
∆b ∆c

]
=

[
a− a1 b− b1
b− b1 c− c1

]
, (42)

where a = µ′V −1µ, b = µ′V −11N+K , c = 1′N+KV
−11N+K , a1 = µ′

1V
−1
11 µ1, b1 = µ′

1V
−1
11 1K , and

c1 = 1′KV
−1
11 1K are the population counterparts of the efficient set constants. Therefore, H

is a measure of how far apart the ex ante minimum-variance frontier of K benchmark assets

is from the ex ante minimum-variance frontier of all N +K assets. Conditional on a given

value of Ĝ, the further apart the two frontiers, the bigger the H , the bigger the ω1 and ω2,

and the more powerful the three tests. However, for a given value of H , the powers of the

three tests also depend on Ĝ, which is a measure of the ex post frontier of K benchmark

assets. The better is the ex post frontier of K benchmark assets, the bigger the Ĝ, and the

less powerful the three tests. This is expected because if Ĝ is large, we can see from (18)

that the estimates of α and δ will be imprecise and hence it is difficult to reject the null

hypothesis even though it is not true.

In Figure 4, we present the power of the likelihood ratio test as a function of ω∗
1 =

Tω1/(T −K−1) and ω∗
2 = Tω2/(T −K−1) for N = 2 and 10, and for T −K = 60 and 120,

when the size of the test is 5%. Figure 4 shows that for fixed ω∗
1 and ω∗

2, the power of the

likelihood ratio test is an increasing function of T −K and a decreasing function of N . The

fact that the power of the test is a decreasing function of N does not imply we should use

fewer test assets to test the spanning hypothesis. It only suggests that if the additional test

16It is possible for the Lagrange multiplier test that its power function is not monotonically increasing in
Tω1 and Tω2 when the sample size is very small. (See Perlman (1974) for a discussion of this.) However,
for the usual sample sizes and significance levels that we consider, this problem will not arise.
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assets do not increase ω1 and ω2 (i.e., the additional test assets do not improve the frontier),

then increasing the number of test assets will reduce the power of the test. However, if we

introduce additional test assets that do indeed improve the frontier, then it is possible that

the power of the test can be increased by using more test assets.

Figure 4 about here

The plots for the power function of the Wald and the Lagrange multiplier tests are very

similar to those of the likelihood ratio test, so we do not report them separately. For the

purpose of comparing the power of these three tests, we report in Table II the probability of

rejection of the three tests for N = 10 and T −K = 60 under different values of ω∗
1 and ω∗

2.

Although the difference in the power between the three tests is not large, a pattern emerges.

When ω2 ≈ 0, we have the Wald test as the most powerful among the three tests. However,

when ω1 ≈ ω2, the Lagrange multiplier test is more powerful than the other two tests. There

are only a few cases when the likelihood ratio test is the most powerful test. The pattern

that we observe in Table II holds for other values of N and T −K. Therefore, which test

is more powerful depends on the relative magnitude of ω1 and ω2. The following lemma

presents two extreme cases to help us to identify alternative hypotheses that give ω2 ≈ 0

and ω1 ≈ ω2.

Lemma 2 Define

µz = argmin
r

[
θ2(r)− θ2

1(r)
]
=

∆b

∆c
. (43)

Under alternative hypotheses, we have (i) ω2 = 0 if and only if c = c1 or θ2(µz) = θ2
1(µz),

(ii) ω1 = ω2 if and only if

c− c1
ĉ1

=
θ2(µz)− θ2

1(µz)

1 + θ̂2
1(µz)

. (44)

The first part of the lemma suggests that when there is a point at which the two ex ante

minimum-variance frontiers are very close, then we have ω2 ≈ 0. The second part of the
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lemma suggests that if the percentage reduction of the variance of the global minimum-

variance portfolio is roughly the same as the percentage increase in one plus the square of

the slope of the tangent line (when the y-intrecept of the tangent line is µz), then we will

have ω1 ≈ ω2.

Table II about here

As we discuss earlier in the single test asset case, the effect of a small improvement of

the standard deviation of the global minimum-variance portfolio is more important than the

effect of a large increase in the slope of the tangent lines. Therefore, if we believe that the

test assets could allow us to reduce the standard deviation of the global minimum-variance

portfolio by even a small amount under the alternative hypothesis, then we should expect

ω1 to dominate ω2 and the Wald test should be slightly more powerful than the other two

tests.

C. Economic Significance of Alternative Hypotheses

For reasonable alternative hypotheses, the distance between the standard deviations of the

two global minimum-variance portfolios is the primary determinant of the powers of the three

spanning tests. The distance between the two tangency portfolios is relatively unimportant.

This is expected because the test of spanning is a joint test of α = 0N and δ = 0N and

it weighs the estimates α̂ and δ̂ according to their statistical accuracy. Since δ does not

involve µ (recall that δ is proportional to the weights of the N test assets in the global

minimum-variance portfolio of all N +K assets), it can be estimated a lot more accurately

than α. Therefore, tests of spanning inevitably place heavy weights on δ̂ and little weights

on α̂. Although this practice is natural from a statistical point of view, it does not take into

account the economic significance of the departure from the spanning hypothesis. Obviously,

a small difference in the global minimum-variance portfolios, while statistically significant,

is not economically as important as a big difference in the tangency portfolios, even though
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the latter may be more difficult to show up statistically.

The fact that statistical significance does not always correspond to economic significance

for the three spanning tests suggests that researchers need to be cautious in interpreting

the p-values of these tests.17 A low p-value does not always imply there is an economically

significant difference between the two frontiers, and a high p-value does not always imply the

test assets do not add much to the benchmark assets. To mitigate this problem, we suggest

researchers should examine the two components of the spanning hypothesis (α = 0N and

δ = 0N) individually instead of jointly. Such a practice could allow us to better assess the

statistical evidence against the spanning hypothesis.

To be more specific, we suggest the following step-down procedure to test the spanning

hypothesis.18 This procedure is seldom used in the finance literature but we believe this

alternative procedure is potentially more flexible and provides more information than the

three tests that we discuss earlier. The step-down procedure is a sequential test. We first

test α = 0N using an F -test. This test is similar to the GRS F -test. Denote

F1 =

(
T −K −N

N

)(
|Σ̄|
|Σ̂| − 1

)
=

(
T −K −N

N

)(
â− â1

1 + â1

)
, (45)

where Σ̂ is the unconstrained estimate of Σ and Σ̄ is the constrained estimate of Σ by

imposing only the constraint of α = 0N . Under the null hypothesis, F1 has a central F -

distribution with N and T −K − N degrees of freedom. The second test is to test δ = 0N

but conditional on the constraint α = 0N . This test is also an F -test, and it is given by

F2 =

(
T −K −N + 1

N

)(
|Σ̃|
|Σ̄| − 1

)

=

(
T −K −N + 1

N

)[(
ĉ+ d̂

ĉ1 + d̂1

)(
1 + â1

1 + â

)
− 1

]
, (46)

17For example, Errunza, Hogan, and Hung (1999) use the p-value from the HK test to measure the degree
to which one can reject mean-variance spanning.

18See Section 8.4.5 of Anderson (1984) for a discussion of the step-down procedure. It should be noted that
the step-down procedure there applies to each of the test assets but not to each component of the hypothesis
as in our case.
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where Σ̃ is the constrained estimate of Σ by imposing both the constraints of α = 0N and

δ = 0N . In the appendix, we show that under the null hypothesis, F2 has a central F -

distribution with N and T − K − N + 1 degrees of freedom, and it is independent of F1.

Suppose the level of significance of the first test is α1 and that of the second test is α2. Under

the step-down procedure, we will accept the spanning hypothesis if we accept both tests.

Therefore, the significance level of this step-down test is 1−(1−α1)(1−α2) = α1+α2−α1α2.
19

There are two benefits of using this step-down test. The first is that we can get an idea of

what is causing the rejection. If the rejection is due to the first test, we know it is because the

two tangency portfolios are statistically very different. If the rejection is due to the second

test, we know the two global minimum-variance portfolios are statistically very different. The

second benefit is flexibility in allocating different significance levels to the two tests based

on their relative economic significance. For example, knowing that it does not take a big

difference in the two global minimum-variance portfolio to reject δ = 0N at the traditional

significance level of 5%, we may like to set α2 to a smaller number so that it takes a more

significant difference in the two global minimum-variance portfolios for us to reject this

hypothesis. Contrary to the three traditional tests that permit the statistical accuracy of

α̂ and δ̂ to determine the relative importance of the two components of the hypothesis, the

step-down procedure could allow us to adjust the significance level on economic significance

of the components. Such a choice could result in a power function that is more sensible than

those of the traditional tests.

To illustrate the step-down procedure, we return to our earlier example of two benchmark

assets in Figure 3. For T −K = 60 and a level of significance of 5%, we show that the three

traditional tests reject the spanning hypothesis with probability 0.86 for a test asset that

merely reduces the standard deviation of the global minimum-variance portfolio from 4.9%

to 4.5%, whereas for a test asset that doubles the slope of the asymptote from 0.0875 to

0.175, the three tests can only reject with probability 0.16. In Table III, we provide the

19Alternatively, one can reverse the order by first testing δ = 0N and then testing α = 0N conditional on
δ = 0N . In choosing the ordering of the tests, the natural choice is to test the more important component
first.
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power function of the step-down test for these two cases, using different values of α1 and

α2 while keeping the significance level of the test at 5%.20 For different values of α1 and

α2, the step-down test has different power in rejecting the spanning hypothesis. However,

in order for the step-down test to be more powerful in rejecting the test asset that doubles

the slope of the asymptote, we need to set α2 to be less than 0.00004. Note that if we wish

to accomplish roughly the same power as the traditional tests, all we need to do is to set

α1 = α2 = 0.02532. While choosing the appropriate α1 and α2 is not a trivial task, it is

far better to be able to have control over them than to leave them determined by statistical

considerations alone.

Table III about here

III. Tests of Mean-Variance Spanning Under Nonnor-

mality

A. Conditional Homoskedasticity

Exact small sample tests are always preferred if they are available. The normality assumption

is made so far to derive the small sample distributions. These results also serve as useful

benchmarks for the general nonnormality case. In this section, we present the spanning tests

under the assumption that the disturbance εt in (9) is nonnormal. There are two cases of

nonnormality to consider. The first case is when εt is nonnormal but it is still independently

and identically distributed when conditional on R1t. The second case is when the variance

of εt can be time-varying as a function of R1t, i.e., the disturbance εt exhibits conditional

heteroskedasticity.

For the first case that εt is conditionally homoskedastic, the three tests, (23)–(25), are still

asymptotically distributed as χ2
2N under the null hypothesis. However, if εt is not normally

20Under the alternative hypotheses, F1 and F2 are not independent. Details on the computation of the
power of the step-down test are available upon request.
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distributed, their finite sample distributions will not be the same as the ones presented

in Section I. Nevertheless, the small sample distribution under the normality assumption

can still provide a very good approximation for the small sample distribution under the

nonnormality case. To illustrate this, we simulate the returns on the test assets under the

null hypothesis but with εt independently drawn from a multivariate Student-t distribution

with five degrees of freedom.21 In Table IV, we present the actual probabilities of rejection of

the three tests in 100,000 simulations, for different values of K, N , and T , when the rejection

decision is based on the 95th percentile of the exact distribution under the normality case.

As we can see from Table IV, even when εt departs significantly from normality, the small

sample distribution derived for the normality case still works amazingly well. Our findings

are very similar to those of MacKinlay (1985) and Zhou (1993), in which they find that

when εt is conditionally homoskedastic, nonnormality of εt has little impact on the finite

sample distribution of the GRS test even for T as small as 60. Therefore, if one believes

conditional homoskedasticity is a good working assumption, one should not hesitate to use

the small sample version of the three tests derived in Section I even though εt does not have

a multivariate normal distribution.

Table IV about here

B. Conditional Heteroskedasticity

When εt exhibits conditional heteroskedasticity, the earlier three test statistics, (23)–(25),

will no longer be asymptotically χ2
2N distributed under the null hypothesis.22 In this case,

Hansen’s (1982) GMM is the common viable alternative that relies on the moment conditions

of the model. In this subsection, we present the GMM tests of spanning under the regression

approach. This is the approach used by Ferson, Foerster, and Keim (1993).

21Due to the invariance property, it can be shown that the joint distribution of λ1 and λ2 does not depend
on Σ when εt has a multivariate elliptical distribution. Details are available upon request.

22It can be shown that under the null hypothesis, the asymptotic distribution of the three test statistics
is a linear combination of 2N independent χ2

1 random variables.
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Define xt = [1, R′
1t]

′, εt = R2t−B′xt, the moment conditions used by the GMM estimation

of B are

E[gt] = E[xt ⊗ εt] = 0(K+1)N . (47)

We assume Rt is stationary with finite fourth moments. The sample moments are given by

ḡT (B) =
1

T

T∑
t=1

xt ⊗ (R2t − B′xt) (48)

and the GMM estimate of B is obtained by minimizing ḡT (B)′S−1
T ḡT (B) where ST is a

consistent estimate of S0 = E[gtg
′
t], assuming serial uncorrelatedness of gt. Since the system

is exactly identified, the unconstrained estimate B̂, and hence Θ̂, does not depend on ST

and remains the same as their OLS estimates in Section I. In the appendix, we show that

the GMM version of the Wald test can be written as

Wa = Tvec(Θ̂′)′ [(AT ⊗ IN)ST (A
′
T ⊗ IN)]

−1
vec(Θ̂′) A∼ χ2

2N , (49)

where

AT =

[
1 + â1 −µ̂1V̂

−1
11

b̂1 −1′K V̂
−1
11

]
. (50)

Since both the model and the constraints are linear, Newey and West (1987) show that

the GMM version of the likelihood ratio test and the Lagrange multiplier test have exactly

the same form as the Wald test, even though the constrained estimate of B is involved in

calculating the likelihood ratio and Lagrange multiplier tests. Therefore, all three tests are

numerically identical if they use the same ST . In practice, different estimates of ST are often

used for the Wald test and the Lagrange multiplier test. For the case of the Wald test, ST is

computed using the unconstrained estimate of B whereas for the Lagrange multiplier test,

ST is usually computed using the constrained estimate of B. Since the constrained estimate

of B depends on the choice of ST , a two-stage or an iterative approach is often used for

performing the Lagrange multiplier test. Despite using different ST , the two tests are still

asymptotically equivalent under the null hypothesis. For the rest of this section, we focus

on the GMM Wald test because its analysis does not require a specification of the initial

weighting matrix or the number of iterations.
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C. A Specific Example: Multivariate Elliptical Distribution

To study the potential impact of conditional heteroskedasticity on tests of spanning, we

look at the special case that the returns have a multivariate elliptical distribution. Except

for the special case of multivariate normal distribution, the conditional variance of εt is no

longer a constant, but a function of R1t. The use of the multivariate elliptical distribution to

model returns can be motivated both empirically and theoretically. Empirically, Blatteberg

and Gonedes (1974) find that stock returns have excess kurtosis compared with the normal

distribution, and such a feature can often be captured by some members in the elliptical

distribution like the multivariate Student-t distribution. Theoretically, multivariate elliptical

distribution is the largest class of distributions for which mean-variance analysis is consistent

with expected utility maximization.

For our purpose, the choice of multivariate elliptical distribution is appealing because the

GMM Wald test has a simple analytical expression in this case. This analytical expression

allows for simple analysis of the GMM Wald tests under conditional heteroskedasticity. The

following proposition summarizes the results.23

Proposition 2: Suppose Rt is independently and identically distributed as a multivariate

elliptical distribution with finite fourth moments. Define its kurtosis parameter as

κ =
E[(Rit − E[Rit])

4]

3Var[Rit]2
− 1, (51)

where Rit is an element of Rt. The GMM Wald test of spanning is given by

Wa = T tr(ĤĜ−1
a )

A∼ χ2
2N , (52)

where Ĥ defined in (22) and

Ĝa =

[
1 + (1 + κ̂)â1 (1 + κ̂)b̂1

(1 + κ̂)b̂1 (1 + κ̂)ĉ1

]
, (53)

where κ̂ is a consistent estimate of κ.

23We thank Chris Geczy for suggesting an improvement to this proposition. See Geczy (2000) for a similar
conditional heteroskedasticity adjustment for the tests of mean-variance efficiency.
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Note that when returns exhibit excess kurtosis, Ĝa − Ĝ is a positive definite matrix, so

the regular Wald test W = T tr(ĤĜ−1) is greater than the GMM Wald test Wa.
24 Since

Ĝa − Ĝ does not go to zero asymptotically when κ > 0, using W will lead to over-rejection

problem when returns follow a multivariate elliptical distribution with excess kurtosis. In

the following, we study a popular member of the multivariate elliptical distribution – the

multivariate Student-t distribution.25 To assess the impact of the multivariate Student-t

distribution on tests of spanning, we perform a simulation experiment using the same two

benchmark assets given in Figure 3. For different choices of N , we simulate returns of the

benchmark assets and the test assets jointly from a multivariate Student-t distribution with

mean and variance satisfying the null hypothesis. In Table V, we present the actual size of

W and Wa when the significance level of the tests is 5%. The results are presented for two

different values of degrees of freedom for the multivariate Student-t distribution, ν = 5 and

10. In addition, we also present the actual size of the small sample version of both Wald

tests using the distribution in (28), which is exact under the normality assumption.

Table V about here

As we can see from Table V, the regular Wald tests reject far too often, regardless of

using the asymptotic distribution χ2
2N or the small sample distribution under normality

assumption. The over-rejection problem is severe when N is large and when the degrees of

freedom are small. In addition, the over-rejection problem does not go away as T increases.

For the GMM Wald test based on the χ2
2N distribution, it works reasonably well except

when N is large, and its probability of rejection gets closer to the size of the test as T

increases. The GMM Wald test based on the small sample distribution under the normality

assumption works well when ν = 10. When ν = 5, the small sample GMM Wald tests

under-reject the null hypothesis, especially when N is large. This under-rejection problem,

24It can be shown that −2/(N +K +2) < κ <∞ for multivariate elliptical distribution with finite fourth
moments. Therefore, Ĝa cannot be too much smaller than Ĝ when the total number of assets (N +K) is
large, but it can be much bigger than Ĝ when the return distribution has fat tails.

25For multivariate Student t-distribution with ν degrees of freedom, we have κ = 2/(ν − 4).
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however, disappears as T increases.

Table V also reports the average ratio of W to Wa. It shows that for ν = 5, the regular

Wald test is on average about twice as big as the GMM Wald test, but for ν = 10, the

ratio goes down to roughly 1.167. To understand how this average ratio is determined, we

show in the Appendix that the expected bias of the regular Wald test under the multivariate

Student-t distribution is

E

[
W

Wa

]
− 1 ≈ κ

2
=

1

ν − 4
(54)

when the square of the slope of the asymptote to the sample frontier of the K benchmark

assets, θ̂2
1(µ̂g), is very small compared with one (which is usually the case for monthly data).

Therefore, when ν = 5, the expected bias is about 100%, and when ν = 10, the expected

bias is about 16.7%. The magnitude of this bias is much greater than the one reported by

MacKinlay and Richardson (1991) for test of mean-variance efficiency of a given portfolio.

In MacKinlay and Richardson (1991), they find that for ν = 5, the bias of the regular

Wald test of mean-variance efficiency of a given portfolio is less than 35% even when the

squared Sharpe ratio of the benchmark portfolio is very large, and the bias is negligible

when the squared Sharpe ratio is small. To resolve this difference, we note that the test of

mean-variance efficiency of a given portfolio is a test of α = 0N . The asymptotic variance

of α̂ with and without the conditional heteroskedasticity adjustment are (1 + a1)Σ and[
1 +

(
ν−2
ν−4

)
a1

]
Σ, respectively.26 When the squared Sharpe ratio of the benchmark portfolio,

a1, is small compared with one, 1 + a1 is very close to 1 +
(

ν−2
ν−4

)
a1, and hence the impact

of the conditional heteroskedasticity adjustment on test of α = 0N is minimal. For the case

of test of spanning, it is a joint test of α = 0N and δ = 0N . The asymptotic variance of

δ̂ with and without the conditional heteroskedasticity adjustment are c1Σ and
(

ν−2
ν−4

)
c1Σ,

respectively, and the ratio of the two is always equal to (ν − 2)/(ν − 4). When ν is small,

the bias of W could still be very large even when the asymptotic variance of α̂ is almost

unaffected. Therefore, conditional heteroskedasticity has potentially much bigger impact on

26The asymptotic variance of α̂ is given in (A28) in the Appendix. For the special case of K = 1, this
expression is given in MacKinlay and Richardson (1991).
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tests of spanning than on tests of mean-variance efficiency of a given portfolio, and it is

advisable not to ignore such adjustment for tests of spanning.

Besides its impact on the size of the regular Wald test, multivariate Student- t distribution

also has significant impact on the power of the spanning test. This is because when returns

follow a multivariate Student-t distribution, the asymptotic variances of α̂ and δ̂ are higher

than the case of multivariate normality. As a result, departures from the null hypothesis

become more difficult to detect. Nevertheless, the power reduction is not uniform across all

alternative hypotheses. For test assets that improve the tangency portfolio (i.e., α �= 0N),

we do not expect a significant change in power because the asymptotic variances of α̂ under

multivariate Student-t and multivariate normality are almost identical. However, for test

assets that improve the variance of the global minimum-variance portfolio (i.e., δ �= 0N), we

expect there can be a substantial loss in power when returns follow a multivariate Student-t

distribution since the asymptotic variance of δ̂ under multivariate Student-t returns will be

much higher than in the case of multivariate normal returns, especially when the degrees of

freedom is small.

Figure 5 about here

In Figure 5, we plot the power function of Wa under multivariate Student-t returns for

these two types of alternative hypotheses. We use the same two benchmark assets as in

Figure 3 and a single test asset constructed under different alternative hypotheses. Since

we do not have the analytical expression for the power of Wa under multivariate Student-t

returns, the power functions are obtained by simulation. The two plots on the left hand side

are for the power function of a test asset that has α �= 0. For both T = 60 and 120, we can

see from Figure 5 that the power function for a test asset that has nonzero α does not change

much by going from multivariate normal returns to multivariate Student-t returns. In fact,

the power of Wa improves slightly when returns follow a multivariate Student-t distribution

with ν = 5. This is because in finite samples, α̂ is not normally distributed when we have
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multivariate Student-t returns, so it is possible that the power ofWa can be slightly improved

for the case of multivariate Student-t returns, especially when the asymptotic variance of α̂

does not change by much going from multivariate normal returns to multivariate Student-t

returns. However, for a test asset that has δ �= 0, the two plots on the right hand side of

Figure 5 show that there is a substantial decline in the power of Wa when returns follow a

multivariate Student-t distribution, as compared with the case of multivariate normal.

IV. SDF Based Tests of Spanning

A. Equivalent Hypotheses of Spanning

Ferson (1992), DeSantis (1993), and Bekaert and Urias (1996, BU hereafter) exploit the

duality of the Hansen-Jagannathan (1991) bound and the mean-variance frontier and suggest

equivalent hypotheses of spanning. Starting with the BU approach, they project a stochastic

discount factor mt with mean c on the returns of N +K assets as

mt = c+ (Rt − µ)′β(c) + εt, (55)

where c is a constant. Under no arbitrage, we have

E[(1N+K +Rt)mt] = 1N+K (56)

and hence β(c) is given by

β(c) = V −1[(1− c)1N+K − cµ]. (57)

In their alternative spanning test, BU choose two distinct values of c, c1 and c2, and test

H1 : Qβ(c1) = 0N and Qβ(c2) = 0N , (58)

where Q = [ON×K , IN ]. In essence, BU test mean-variance spanning by examining whether

the N test assets can help to explain the variance of the stochastic discount factor.

BU prove that H0 and H1 are equivalent. We provide an alternative proof here that has

a simple geometric interpretation.27 To understand what β(c1) and β(c2) represent, we note

27See also Ferson (1992) for yet another alternative proof and discussion.
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that

β(c) = (1− c)V −11N+K − cV −1µ = (1− c)(1′N+KV
−11N+K)w2 − c(1′N+KV

−1µ)w1, (59)

where w1 and w2 are the weights of two frontier portfolios defined in (5) and (6). Therefore,

β(c1) and β(c2) are just two different linear combinations of the weights of two frontier

portfolios of the N +K assets. With this expression, it is easy to see that H1 is equivalent to

the hypothesis of Qw1 = 0N and Qw2 = 0N , and hence it is also equivalent to H0 : α = 0N

and δ = 0N as we show earlier.

DeSantis (1993) uses a somewhat different approach. He projects the stochastic discount

factor on the (gross) returns as

mt = c + (1N+K +Rt)
′γ(c) + εt. (60)

Note that unlike the BU approach, the expected return µ does not appear as a parameter

in DeSantis’ specification and c is not the mean of the stochastic discount factor mt. Using

(56), we have

γ(c) = U−1[(1− c)1N+K − cµ], (61)

where

U = E[(1N+K +Rt)(1N+K +Rt)
′] = V + (1N+K + µ)(1N+K + µ)′. (62)

Similar to BU’s approach, DeSantis (1993) tests mean-variance spanning by choosing two

distinct values of c, c1 and c2, and test

H2 : Qγ(c1) = 0N and Qγ(c2) = 0N . (63)

To see that H2 is equivalent to H0, we write U−1 as

U−1 = V −1 − V −1(1N+K + µ)(1N+K + µ)′V −1

1 + (1N+K + µ)′V −1(1N+K + µ)

= V −1 − (d1w1 + d2w2)(1N+K + µ)′V −1, (64)
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where w1 and w2 are defined in (5) and (6) and

d1 =
1′N+KV

−1µ

1 + (1N+K + µ)′V −1(1N+K + µ)
, (65)

d2 =
1′N+KV

−11N+K

1 + (1N+K + µ)′V −1(1N+K + µ)
. (66)

Therefore, we have

γ(c) = U−1[(1− c)1N+K − cµ]

= V −1[(1− c)1N+K − cµ]− (d1w1 + d2w2)(1N+K + µ)′V −1[(1− c)1N+K − cµ]

= (1− c)(1′N+KV
−11N+K)w2 − c(1′N+KV

−1µ)w1

− (1N+K + µ)′V −1[(1− c)1N+K − cµ](d1w1 + d2w2). (67)

Like β(c1) and β(c2), γ(c1) and γ(c2) are just two different linear combinations of the weights

of two frontier portfolios of the N +K assets. Therefore, H2 is equivalent to the hypothesis

of Qw1 = 0N and Qw2 = 0N , and hence it is also equivalent to H0 : α = 0N and δ = 0N .

B. GMM Tests of Spanning under the SDF Approach

Although the two hypotheses H1 and H2 based on the SDF approach are equivalent to the

hypothesis H0 in the regression approach, there are differences between these two approaches.

As a statistical model, the regression approach assumes α and β are constant parameters.

This assumption can be satisfied without µ and V being constant over time. Therefore, under

the regression approach, we do not need to assume the weights of the frontier portfolios are

constant over time. However, the statistical models used by the SDF approach assume that

either β(c) or γ(c) is constant over time for all c. This implies V −11N+K and V −1µ are

constant over time and hence the weights of the frontier portfolios must also be constant

over time. While the regression approach still does not allow for arbitrary changes in µ and

V over time, it is more flexible than the SDF approach.

With these remarks in mind, we now turn to the GMM estimation and tests by using
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the SDF approach. The sample moment conditions used by BU are

h̄T (β(c1), β(c2)) =

[
1
T

∑T
t=1 Rt(c1 + (Rt − µ̂)′β(c1))− (1− c1)1N+K

1
T

∑T
t=1 Rt(c2 + (Rt − µ̂)′β(c2))− (1− c2)1N+K

]
. (68)

Note that instead of treating the expected return µ as a parameter, BU use the sample

average return µ̂ in constructing these sample moment conditions. The standard approach

should treat µ as a parameter and uses the following sample moment conditions

h̄∗T (β(c1), β(c2), µ) =




1
T

∑T
t=1 Rt(c1 + (Rt − µ)′β(c1))− (1− c1)1N+K

1
T

∑T
t=1 Rt(c2 + (Rt − µ)′β(c2))− (1− c2)1N+K

1
T

∑T
t=1(Rt − µ)


 . (69)

Since the system is exactly identified, it is easy to show that the unconstrained estimates of

β(c1) and β(c2) are given by

β̂(c1) = V̂ −1[(1− c1)1N+K − c1µ̂)], (70)

β̂(c2) = V̂ −1[(1− c2)1N+K − c2µ̂)]. (71)

Although the unconstrained estimates of β(c1) and β(c2) are the same regardless of whether

we use h̄T or h̄∗T , using h̄∗T allows us to come up with the correct asymptotic variance of

b̂ = (β̂(c1)
′, β̂(c2)′)′ by incorporating the estimation error of µ̂. However, for the purpose

of testing the spanning hypothesis H1, one can disregard the errors-in-variables adjustment.

Let S = Avar(h̄∗T ) and write

S =

[
S11 S12

S21 S22

]
, (72)

where S11 corresponds to the first two blocks of sample moments of the pricing equation, and

S22 corresponds to the sample moments for estimating the expected return. The following

proposition summarizes the results.

Proposition 3: The GMM estimator of (β(c1)
′, β(c2)′)′ in (69) has asymptotic variance

Avar(b̂) = C−1(S11 − F ′S21 − S12F + F ′S22F )C−1, (73)
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where C = I2 ⊗ V and F = [β(c1)µ
′, β(c2)µ′]. The GMM Wald test of H1 : Qβ(c1) =

0N , Qβ(c2) = 0N is given by

J1 = T (b̂′Q′
2[Q2Ĉ

−1(Ŝ11 − F̂ ′Ŝ21 − Ŝ12F̂ + F̂ ′Ŝ22F̂ )Ĉ−1Q′
2]

−1Q2b̂)
A∼ χ2

2N , (74)

where Q2 = I2 ⊗ Q, and Ĉ, F̂ , Ŝ are consistent estimators of C, F , and S, respectively.

Under the null hypothesis, J1 is asymptotically equivalent to

J2 = T (b̂′Q′
2(Q2Ĉ

−1Ŝ11Ĉ
−1Q′

2)
−1Q2b̂)

A∼ χ2
2N , (75)

the GMM Wald test obtained by BU from (68) without the errors-in-variables adjustment.

The result that we can ignore the errors-in-variables problem for testing the spanning hy-

pothesis is similar to a result in Shanken (1992), where he shows that in the two-pass

methodology, one can ignore estimation errors on betas when it comes to testing the beta

risk premium is equal to zero. Although both J1 and J2 are asymptotically valid under the

null hypothesis, their size as well as their power could be quite different in finite samples. We

address these issues in the next subsection using simulation. It is easy to show that J1 and J2

are numerically independent of the choice of c1 and c2. So without loss of generality, we can

choose c1 = 0 and c2 = 1. In this case, we have β̂(0) = V̂ −11N+K and β̂(1) = −V̂ −1µ̂, and

they are proportional to the weights of the two frontier portfolios that we discussed earlier.

Therefore, BU’s approach to testing mean-variance spanning is to directly test whether the

two frontier portfolios contain zero weights in the N test assets.

Under DeSantis’ parameterization, the sample moment conditions are

m̄T (γ(c1), γ(c2)) =

[
1
T

∑T
t=1(1 +Rt)(c1 + (1 +Rt)

′γ(c1))− 1N+K

1
T

∑T
t=1(1 +Rt)(c2 + (1 +Rt)

′γ(c2))− 1N+K

]
. (76)

The resulting unconstrained estimates of γ(c1) and γ(c2) are given by

γ̂(c1) = Û−1[1N+K − c1(1N+K + µ̂)], (77)

γ̂(c2) = Û−1[1N+K − c2(1N+K + µ̂)], (78)
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where Û = 1
T

∑T
t=1(1+Rt)(1+Rt)

′. Note that in DeSantis’ specification, µ does not appear

as a parameter and therefore we do no need to take care of the errors-in-variables problem

as in BU’s specification. Under this specification, the GMM Wald test of H2 : Qγ(c1) =

0N , Qγ(c2) = 0N is given by

J3 = T (ĝ′Q′
2[(I2 ⊗QÛ−1)Ŝm(I2 ⊗ Û−1Q′)]−1Q2ĝ)

A∼ χ2
2N , (79)

where ĝ = (γ̂(c1)
′, γ̂(c2)′)′ and Ŝm is a consistent estimate of the asymptotic variance of

m̄T . Similar to J1 and J2, J3 is also numerically independent of the choice of c1 and c2.

Without loss of generality, we can choose c1 = −(µ̂′V̂ −11N+K + 1′N+KV̂
−11N+K) and c2 =

1+ µ̂′V̂ −1µ̂+ µ̂′V̂ −11N+K . With this choice of c1 and c2, we can verify that γ̂(c1) = V̂ −11N+K

and γ̂(c2) = −V̂ −1µ̂, and hence they are also proportional to the weights of the two frontier

portfolios that we discussed earlier. Therefore, similar to BU’s approach, DeSantis’ approach

also tests mean-variance spanning by directly testing whether the two frontier portfolios

contain zero weights in the N test assets.

In both BU and DeSantis specifications, one can also perform a Lagrange multiplier test

or an over-identification test of the spanning hypothesis. However, such tests would require

iterations and the specification of an initial weighting matrix. For a general initial weighting

matrix, the test results are not independent of the choice of c1 and c2.
28 Due to the possible

ambiguity of the Lagrange multiplier and over-identification tests, we will not present their

results here.

C. Size and Power of SDF Tests of Spanning

In this subsection, we study the size and power of the GMM Wald tests of spanning under

the SDF approach, J1 through J3, and compare them with the GMM Wald test under the

regression approach, Wa. We simulate returns from a multivariate normal distribution with

28When the initial weighting matrix is an identity matrix, the Lagrange multiplier tests and over-
identification tests are indeed independent of the choice of c1 and c2, but this is not true for a general
initial weighting matrix.
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parameters chosen to satisfy the null hypothesis. To make a fair comparison between the

SDF based Wald tests and the regression based Wald test, we do not use the information of

the normal return distribution in constructing Wa. Instead of using (24) which is valid only

under conditional homoskedasticity assumption, the regression based GMM Wald test we use

is the Wa in (49). In Table VI, we present the actual probabilities of rejection of J1 to J3 and

Wa in 100,000 simulations, for different values of K, N , and T , when the rejection decision

is based on the 95th percentile of the χ2
2N distribution. As we can see from Table VI, all four

GMM Wald tests grossly over-reject the null hypothesis. Although not reported, this over-

rejection problem is even more severe when returns are multivariate Student-t distributed.

Therefore, when using the GMM Wald tests of spanning, one must be cautious when using

the asymptotic distribution for making the acceptance/rejection decision.

Table VI about here

Although this over-rejection problem of the Wald tests is severe when using their asymp-

totic distribution, one should not be overly concerned if one can simulate their empirical

distributions under the null hypothesis and use them for acceptance/rejection decision. The

more important concern is the relative power of these tests. We perform the same simulation

experiment as before by generating returns from two benchmark assets as in Figure 3 and a

single test asset constructed under different alternative hypotheses. In Figure 6, we generate

the returns from a multivariate normal distribution and plot the power functions of J1 to J3

and compare them with Wa. As we can see in Figure 6, there are no important differences

between the power of the four tests when the returns are multivariate normally distributed,

especially when T = 120. Therefore, in this case, one could use any of the tests as long as

one uses the empirical distribution under the null hypothesis to make the rejection decision.

The similarity of the power functions also suggests that the SDF based tests of spanning

have good power in rejecting alternative hypotheses that generate even a small reduction in

the variance of the global minimum-variance portfolio but little power against alternative

hypotheses that generate large difference in the tangency portfolios.
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Figure 6 about here

The same conclusion does not hold when returns are not normally distributed. We repeat

the same simulation exercise but using returns generated from a multivariate Student-t

distribution with five degrees of freedom. The power functions of the four tests are plotted

in Figure 7. Here the GMM Wald test under the regression approach,Wa, has the best power

in all cases. As for the three SDF based GMM Wald tests, J2 has better power for alternative

hypotheses that have α �= 0, whereas J3 has better power for alternative hypotheses that have

δ �= 0. While we cannot make the general statement that the regression based GMM Wald

test is better than the SDF based GMM Wald tests for all cases, our simulation evidence

appears to prefer the spanning test under the regression approach, especially when returns

have a multivariate Student-t distribution.

Figure 7 about here

V. Conclusions

In this paper, we conduct a comprehensive study of various tests of mean- variance span-

ning. We provide geometrical interpretations and exact distributions for three popular test

statistics based on the regression model. We also provide a power analysis of these tests

that offers economic insights for understanding the empirical performance of these tests. In

realistic situations, spanning tests have very good power for assets that could improve the

variance of the global minimum-variance portfolio, but they have very little power against

assets that could only improve the tangency portfolio. To mitigate this problem, we suggest

a step-down test of spanning that allows us to extract more information from the data as

well as gives us the flexibility to adjust the size of the test by weighting the two components

of the spanning hypothesis based on their relative economic importance. In addition, we

provide a linkage between the traditional regression based spanning tests with those that

are based on the newer SDF approach. The finite sample properties and the power studies
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of these two types of tests are compared and we find evidence that the spanning tests under

the traditional regression approach can be superior to the ones under the SDF approach,

especially when returns follow a multivariate Student-t distribution.
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Appendix

Proof of (29): From Anderson (1984, p.529) and using the duplication formula

Γ(k)Γ

(
k − 1

2

)
=

√
πΓ(2k − 1)

22k−2
(A1)

when 2k is an integer, we can write the joint density function of ξ1 and ξ2 under the null

hypothesis as

f(ξ1, ξ2) =
n+ 1

2B(2m+ 2, 2n+ 3)

[
2∏

i=1

ξm
i (1− ξi)

n

]
(ξ1 − ξ2) for 1 ≥ ξ1 ≥ ξ2 ≥ 0, (A2)

where m = (N − 3)/2 and n = (T −K −N − 2)/2.

Using a transformation a1 = ξ1 + ξ2 and a2 = ξ1ξ2, we have the joint density function of

a1 and a2 as

f(a1, a2) =
n+ 1

2B(2m+ 2, 2n+ 3)
am

2 (1− a1 + a2)
n. (A3)

Since a1 = (ξ1 + ξ2) ≥ 2
√
ξ1ξ2 = 2

√
a2 and 1 − a1 + a2 = (1 − ξ1)(1 − ξ2) ≥ 0, the

probability for ξ1 + ξ2 ≤ v is equal to

P [a1 ≤ v]

=
n+ 1

2B(2m+ 2, 2n+ 3)

∫ v2

4

0

∫ min[v,1+a2]

2
√

a2

am
2 (1− a1 + a2)

nda1da2

=
n+ 1

2B(2m+ 2, 2n+ 3)

∫ v2

4

0

am
2

[
(1− a1 + a2)

n+1

n+ 1

]∣∣∣∣
2
√

a2

min[v,1+a2]

da2

=
1

2B(2m+ 2, 2n+ 3)

[∫ v2

4

0

am
2 (1−√

a2)
2n+2da2 −

∫ v2

4

max[0,v−1]

am
2 (1− v + a2)

n+1da2

]

= I v
2
(2m+ 2, 2n+ 3)− 1

2B(2m+ 2, 2n+ 3)

∫ v2

4

max[0,v−1]

am
2 (1− v + a2)

n+1da2. (A4)

This completes the proof. Q.E.D.

Proof of Lemma 1: Denote β̂ = V̂21V̂
−1
11 and Σ̂ = V̂22 − V̂21V̂

−1
11 V̂12. Using the partitioned

matrix inverse formula, it is easy to verify that

V̂ −1 =

[
V̂ −1

11 + β̂ ′Σ̂−1β̂ −β̂ ′Σ̂−1

−Σ̂−1β̂ Σ̂−1

]
=

[
V̂ −1

11 OK×N

ON×K ON×N

]
+

[ −β̂ ′

IN

]
Σ̂−1[−β̂ IN ]. (A5)
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Therefore,[
â b̂

b̂ ĉ

]

=

[
µ̂′

1′N+K

]
V̂ −1[µ̂ 1N+K ]

=

[
µ̂′

1′N+K

] [
V̂ −1

11 OK×N

ON×K ON×N

]
[µ̂ 1N+K ] +

[
µ̂′

1′N+K

] [ −β̂ ′

IN

]
Σ̂−1[−β̂ IN ][µ̂ 1N+K ]

=

[
µ̂′

1

1′K

]
V̂ −1

11 [µ̂1 1K ] +

[
(µ̂2 − β̂µ̂1)

′

(1N − β̂1K)′

]
Σ̂−1[µ̂2 − β̂µ̂1 1N − β̂1K ]

=

[
â1 b̂1
b̂1 ĉ1

]
+ Ĥ. (A6)

This completes the proof. Q.E.D.

Proof of (36) and (37): Since λ1 and λ2 are the two eigenvalues of ĤĜ−1, they are the

solutions to the following equation

|ĤĜ−1 − λI2| = 0, (A7)

or equivalently the solutions to

|Ĥ − λĜ| =
∣∣∣∣ ∆â− λ(1 + â1) ∆b̂− λb̂1

∆b̂− λb̂1 ∆ĉ− λĉ1

∣∣∣∣ = 0. (A8)

Simplifying, we have

(ĉ1 + d̂1)λ
2 −

[
∆âĉ1 − 2∆b̂b̂1 +∆ĉ(1 + â1)

]
λ+

[
∆â∆ĉ− (∆b̂)2

]
= 0. (A9)

It is easy to see that

λ1 + λ2 =
∆âĉ1 − 2∆b̂b̂1 +∆ĉ(1 + â1)

ĉ1 + d̂1

=
∆â− 2∆b̂µ̂g1 +∆ĉµ̂2

g1

1 + d̂1

ĉ1

+
∆ĉ

(
1+â1

ĉ1
− µ̂2

g1

)
1 + d̂1

ĉ1

=
θ̂2(µ̂g1)− θ̂2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

+
∆ĉ

ĉ1
, (A10)

where the last equality follows from the fact that

θ̂2(r)− θ̂2
1(r) = (â− 2b̂r + ĉr2)− (â1 − 2b̂1r + ĉ1r

2) = ∆â− 2∆b̂r +∆ĉr2. (A11)
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For the Lagrange multiplier test, we define ξi = λi/(1 + λi) and we have ξ1 and ξ2 as the

two eigenvalues of Ĥ(Ĥ + Ĝ)−1, which are the solutions to the following equation

|Ĥ − ξ(Ĥ + Ĝ)| =
∣∣∣∣ ∆â− ξ(1 + â) ∆b̂− ξb̂

∆b̂− ξb̂ ∆ĉ− ξĉ

∣∣∣∣ = 0. (A12)

Comparing (A8) with (A12), the only difference is â1, b̂1, ĉ1 are replaced by â, b̂, and ĉ.

Therefore, by making the corresponding substitutions, ξ1 + ξ2 takes the same form as (A10).

This completes the proof. Q.E.D.

Proof of (40): Following Muirhead (1982), it is easy to show that Y ∗
1 =

√
TĜ− 1

2 Θ̂ and Σ̂ are

independent of each other. Furthermore, the eigenvalues of Y ∗
1 (T Σ̂)

−1Y ∗
1
′ = Ĝ− 1

2 Θ̂Σ̂−1Θ̂′Ĝ− 1
2

are the same as the eigenvalues of Θ̂Σ̂−1Θ̂′Ĝ−1 = ĤĜ−1, so from Theorem 10.4.5 of Muirhead

(1982), we have the joint density function of the two eigenvalues of ĤĜ−1 as

f(λ1, λ2) = e−tr(Ω)/2
1F1

(
T −K + 1

2
;
N

2
;
Ω

2
, L(I2 + L)−1

)
×

N − 1

4B(N, T −K −N)

[
2∏

i=1

λ
N−3

2
i

(1 + λi)
T−K+1

2

]
(λ1 − λ2), (A13)

for λ1 ≥ λ2 ≥ 0, where L = Diag(λ1, λ2), 1F1 is the hypergeometric function with two matrix

arguments, and

Ω = TĜ− 1
2ΘΣ−1Θ′Ĝ− 1

2 . (A14)

It is well known that the hypergeometric function only depends on the eigenvalues of Ω,

which is the same as the eigenvalues of THĜ−1. Therefore, the joint density function of

λ1 and λ2 depends only on the eigenvalues of THĜ−1 and we can replace Ω with D. This

completes the proof. Q.E.D.

Proof of Proposition 1: Using Theorem 10.4.2 of Muirhead (1982), we can find out the density

function of the two eigenvalues of AB−1 is exactly the same as (40). To generate B, we use

the Bartlett’s decomposition of central Wishart distribution (see Muirhead (1982), Theorem

3.2.14). Define L a lower triangular 2 by 2 matrix with L11 ∼
√
χ2

T−K−N+1 L22 ∼
√
χ2

T−K−N ,

and L12 ∼ N( 0, 1) . Then B = LL′ ∼W2(T −K −N + 1, I2). To generate A, we generate a
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central Wishart S ∼ W2(N − 2, I2) using the same procedure and a 2 by 2 matrix Z where

vec(Z) ∼ N(vec(D
1
2 ), I4), then we have Z ′Z ∼ W2(2, I2, D) and A = S+Z ′Z ∼ W2(N, I2, D).

This completes the proof. Q.E.D.

Proof of Lemma 2: By replacing ∆â, ∆b̂, ∆ĉ by ∆a, ∆b, and ∆c, we have from (A10)

ω1 + ω2 =
∆c

ĉ1
+
θ2(µ̂g1)− θ2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

. (A15)

Similarly, with the same replacement, we have from (A9)

ω1ω2 =
∆a∆c− (∆b)2

ĉ1 + d̂1

=

(
∆c

ĉ1

)(
θ2(µz)− θ2

1(µz)

1 + θ̂2
1(µ̂g1)

)
, (A16)

where the last equality follows from the fact that

θ2(µz)− θ2
1(µz) = ∆a− 2∆b

(
∆b

∆c

)
+∆c

(
∆b

∆c

)2

= ∆a− (∆b)2

∆c
. (A17)

(i) Since under the alternative hypothesis, we have ω1 > 0. Therefore, from (A16), we can see

that ω2 = 0 if and only if ∆c = 0 or θ2(µz)− θ2
1(µz). (ii) Using the inequality (a+ b)2 ≥ 4ab

for a and b nonnegative and the definition of µz, we have

(ω1 + ω2)
2 =

[
∆c

ĉ1
+
θ2(µ̂g1)− θ2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

]2

≥ 4

(
∆c

ĉ1

)(
θ2(µ̂g1)− θ2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

)

≥ 4

(
∆c

ĉ1

)(
θ2(µz)− θ2

1(µz)

1 + θ̂2
1(µ̂g1)

)

= 4ω1ω2. (A18)

For ω1 = ω2 > 0, we need the two inequalities to be equalities. This is true if and only if

∆c

ĉ1
=
θ2(µ̂g1)− θ2

1(µ̂g1)

1 + θ̂2
1(µ̂g1)

(A19)

and µ̂g1 = µz. Combining these two conditions, we prove the lemma. Q.E.D.

Proof of the distribution of (45) and (46): The proof that under the null hypothesis, F1 has

a central F -distribution with N and T − K − N degrees of freedom follows directly from
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Theorem 8.4.5 of Anderson (1984). For F2, we have from Seber (1984, pp.412–413),

|Σ̄|
|Σ̃| ∼ UN,1,T−K (A20)

under the null hypothesis, and hence from 2.42 of Seber (1984), we have

F2 =

(
T −K −N + 1

N

)(
|Σ̃|
|Σ̄| − 1

)
∼ FN,T−K−N+1. (A21)

The independence of F1 and F2 under the null hypothesis follows from Corollary 10.5.4 of

Muirhead (1982). This completes the proof. Q.E.D.

Proof of (49): FromHansen (1982), the asymptotic variance of vec(B̂′) is given by (D′
0S

−1
0 D0)

−1,

where

D0 = E

[
∂ḡT (B)

∂vec(B′)′

]
= E[xtx

′
t]⊗ IN . (A22)

Since Θ̂ = AB̂ − C, the asymptotic variance of vec(Θ̂′) is given by

(A⊗ IN)(D′
0S

−1
0 D0)

−1(A′ ⊗ IN ) = (A⊗ IN )D−1
0 S0D

−1
0 (A′ ⊗ IN)

= (A(E[xtx
′
t])

−1 ⊗ IN)S0((E[xtx
′
t])

−1A′ ⊗ IN).(A23)

Using the partitioned matrix inverse formula, we have

A(E[xtx
′
t])

−1 =

[
1 0′K
0 −1′K

] [
1 µ′

1

µ1 V11 + µ1µ
′
1

]−1

=

[
1 0′K
0 −1′K

] [
1 + µ′

1V
−1
11 µ1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]

=

[
1 + µ′

1V
−1
11 µ1 −µ1V

−1
11

1′KV
−1
11 µ1 −1′KV

−1
11

]
. (A24)

Replacing S0 and A(E[xtx
′
t])

−1 by their consistent estimates ST and AT , we obtain (49).

This completes the proof. Q.E.D.

Proof of Proposition 2: When Rt follows a multivariate elliptical distribution, we have

E[R1tR
′
1t ⊗ εtε

′
t] = µ1µ

′
1 ⊗ Σ + (1 + κ)V11 ⊗ Σ = (V11 + µ1µ

′
1)⊗ Σ+ κV11 ⊗ Σ, (A25)

using Corollary 3.2.1 and 3.2.2 in Mathai, Provost, and Hayakawa (1995). It follows that

S0 = E[xtx
′
t]⊗ Σ +

[
0 0′K
0K κV11

]
⊗ Σ. (A26)
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Using this expression and (A22), the asymptotic variance of vec(B̂′) is given by

(D′
0)

−1S0D
−1
0 =

[
1 + a1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
⊗ Σ+ κ

[
a1 −µ′

1V
−1
11

−V −1
11 µ1 V −1

11

]
⊗ Σ. (A27)

Note that the first term is the asymptotic variance of vec(B̂′) under the conditional ho-

moskedasticity assumption, and the second term is the adjustment matrix due to the condi-

tional heteroskedasticity. The asymptotic variance of vec(Θ̂′) is then given by

(A⊗ IN )(D−1
0 )′S0D

−1
0 (A′ ⊗ IN ) =

[
1 + (1 + κ)a1 (1 + κ)b1

(1 + κ)b1 (1 + κ)c1

]
⊗ Σ. (A28)

By replacing a1, b1, c1, κ, Σ by their consistent estimates â1, b̂1, ĉ1, κ̂ and Σ̂, the consistent

estimate of the asymptotic variance of vec(Θ̂′) is Ĝa ⊗ Σ̂. Therefore, the GMM Wald test is

Wa = Tvec(Θ̂′)′(Ĝ−1
a ⊗ Σ̂−1)vec(Θ̂′) = Tvec(Θ̂′)′vec(Σ̂−1Θ̂′Ĝ−1

a ) = T tr(ĤĜ−1
a ), (A29)

where the last equality follows from the identity tr(AB) = vec(A′)′vec(B). This completes

the proof. Q.E.D.

Proof of (54): From (A10), we have

tr(ĤĜ−1) =
θ̂2(µ̂g)− θ̂2

1(µ̂g)

1 + θ̂2
1(µ̂g)

+
∆ĉ

ĉ1
. (A30)

Using a similar proof, we have

tr(ĤĜ−1
a ) =

θ̂2(µ̂g)− θ̂2
1(µ̂g)

1 + (1 + κ̂)θ̂2
1(µ̂g)

+
∆ĉ

ĉ1(1 + κ̂)
≡ X1 +X2. (A31)

Under the null hypothesis, the two terms X1 and X2 are asymptotically independent of each

other and distributed as χ2
N . When θ̂2

1(µ̂g) is small compared with one, we have

tr(ĤĜ−1) ≈ X1 + (1 + κ)X2. (A32)

Therefore,

W

Wa

− 1 ≈ X1 + (1 + κ)X2

X1 +X2

− 1 = κ

(
X2

X1 +X2

)
. (A33)
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Asymptotically, X2/(X1 +X2) has a beta distribution and its expected value is 1/2. There-

fore, we have

E

[
W

Wa

]
− 1 ≈ κ

2
. (A34)

This completes the proof. Q.E.D.

Proof of Proposition 3: Define

D0 = E

[
∂h̄∗T

∂β(c1)′
,

∂h̄∗T
∂β(c2)′

,
∂h̄∗T
∂µ′

]
=

[
C −F ′

O(N+K)×2(N+K) −IN+K

]
, (A35)

we have the asymptotic variance of (b̂, µ̂) as (D′
0S

−1D0)
−1 = D−1

0 S(D′
0)

−1. Using

D−1
0 =

[
C−1 −C−1F ′

O(N+K)×2(N+K) −IN+K

]
, (A36)

we can express D−1
0 S(D′

0)
−1 as[

C−1(S11 − F ′S21 − S12F + F ′S22F )C−1 −C−1(S12 − F ′S22)
−(S21 − S22F )C−1 S22

]
, (A37)

and the asymptotic variance of b̂ is given by its first submatrix. Since the asymptotic variance

of Q2b̂ is

Q2C
−1(S11 − F ′S21 − S12F + F ′S22F )C−1Q′

2, (A38)

the GMM Wald test of H1 follows by replacing the asymptotic variance of Q2b̂ with its

consistent estimate. Under the null hypothesis, we have from (7) that QV −1µ = 0N and

hence

Q2C
−1F ′ =

[
QV −1µβ(c1)

′

QV −1µβ(c2)
′

]
= O2N×(N+K). (A39)

Therefore, the asymptotic variance of Q2b̂ can be simplified to Q2C
−1S11C

−1Q′
2 under the

null hypothesis and J2 is asymptotically equivalent to J1. This completes the proof. Q.E.D.
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Figure 1
The Geometry of Mean-Variance Spanning Tests
The figure plots the ex post minimum-variance frontier hyperbola of K benchmark assets and
that of all N + K assets on the (σ̂, µ̂) space. The constants that determine the hyperbola of K
benchmark assets are â1 = µ̂′1V̂11µ̂1, b̂1 = µ̂′1V̂111K , ĉ1 = 1′K V̂111K , and d̂1 = â1ĉ1 − b̂21, where µ̂1

and V̂11 are maximum likelihood estimates of the expected return and covariance matrix of the K
benchmark assets. The constants that determine the hyperbola of all N +K assets are â = µ̂′V̂ µ̂,
b̂ = µ̂′V̂ 1N+K , ĉ = 1′N+K V̂ 1N+K , and d̂ = âĉ−b̂2, where µ̂ and V̂ are maximum likelihood estimates
of the expected return and covariance matrix of all N+K assets. Portfolios g1 and g are the ex post
global minimum-variance portfolios of the two frontiers. The dotted line going through BF is one

of the asymptotes to the hyperbola of K benchmark assets. It has slope −
√

d̂1
ĉ1
and the distance

BF is
√
1 + d̂1

ĉ1
. The dotted line going through AH is one of the asymptotes to the hyperbola of all

N +K assets. It has slope
√

d̂
ĉ and the distance AH is

√
1 + d̂

ĉ . The distance AG is
√
1 + θ̂21(µ̂g)

where θ̂1(µ̂g) is the slope of the tangent line to the frontier of the K benchmark assets when the

y-intercept of the tangent line is µ̂g. The distance BE is
√
1 + θ̂2(µ̂g1) where θ̂(µ̂g1) is the slope of

the tangent line to the frontier of all N +K assets when the y-intercept of the tangent line is µ̂g1.
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Figure 2
Power Function of Mean-Variance Spanning Test with Single Test Asset
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning as a
function of ω∗ for three different values of T − K (the number of time series observations minus
the number of benchmark assets), when there is only one test asset and the size of the test is 5%.
The spanning test is an F -test, which has a central F -distribution with 2 and T −K − 1 degrees
of freedom under the null hypothesis, and has a noncentral F -distribution with 2 and T −K − 1
degrees of freedom with noncentrality parameter (T −K − 1)ω∗ under the alternatives.
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Figure 3
Minimum-Variance Frontier of Two Benchmark Assets
The figure plots the minimum-variance frontier hyperbola of two benchmark assets in the (σ, µ)
space. The two benchmark assets are the value-weighted (VW) and equally weighted (EW) port-
folios of the NYSE. g1 is the global minimum-variance portfolio and the two dashed lines are the
asymptotes to the efficient set parabola. The frontier of the two benchmark assets is estimated
using monthly data from the period 1926/1–1998/12. The figure also presents two additional fron-
tiers for the case that a test asset is added to the two benchmark assets. The dotted frontier is for
a test asset that improves the standard deviation of the global minimum-variance portfolio from
4.9%/month to 4.5%/month. The outer solid frontier is for a test asset that does not improve the
global minimum-variance portfolio but doubles the slope of the asymptote from 0.0875 to 0.175.
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Figure 4
Power Function of Likelihood Ratio Test
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning as
a function of ω∗

1 and ω
∗
2 using the likelihood ratio test when the size of the test is 5%, where

(T − K − 1)ω∗
1 and (T −K − 1)ω∗

2 are the eigenvalues of the noncentrality matrix THĜ
−1. The

four plots are for two different values of N (number of test assets) and two different values of T −K
(number of time series observations minus number of benchmark assets). The likelihood ratio test
is an F -test, which has a central F -distribution with 2N and 2(T − K − N) degrees of freedom
under the null hypothesis.

53



0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15
0

0.2

0.4

0.6

0.8

1

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

(α/σ)2

P
ow
er

T = 60

(δ/σ)2

P
ow
er

T = 60

(α/σ)2

P
ow
er

T = 120

(δ/σ)2

P
ow
er

T = 120

· – · – ν = 5 · · · · · · ν = 10 —— normal

Figure 5
Power Function of GMM Wald Test Under Multivariate Student-t Returns
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning for two
different types of alternative hypotheses using the GMM Wald test. The plots on the left hand
side are for alternative hypotheses with nonzero α, where (α/σ)2 is the improvement of the square
of the slope of the tangent line with a y-intercept equals to zero. The plots on the right hand side
are for alternative hypotheses with nonzero δ, where (δ/σ)2 is the improvement of the reciprocal of
the variance of the global minimum variance portfolio. T is the length of time series observations
used in the GMM Wald test. The significance level of the test is 5% and the rejection decision is
based on the empirical distribution obtained from 100,000 simulations under the null hypothesis.
For each one of the alternative hypotheses, returns on two benchmark assets and one test asset are
generated using a multivariate Student-t distribution with five or ten degrees of freedom and the
probability of rejection in 100,000 simulations is plotted. The figure also plots the power function
for the case of multivariate normal returns for comparison.
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Figure 6
Power Function of GMM Wald Tests Under Multivariate Normal Returns
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning for two
different types of alternative hypotheses using four different GMM Wald tests (J1 to J3 are SDF
based, Wa is regression based). The plots on the left hand side are for alternative hypotheses
with nonzero α, where (α/σ)2 is the improvement of the square of the slope of the tangent line
with a y-intercept equals to zero. The plots on the right hand side are for alternative hypotheses
with nonzero δ, where (δ/σ)2 is the improvement of the reciprocal of the variance of the global
minimum variance portfolio. T is the length of time series observations used in the GMM Wald
test. The significance level of the test is 5% and the rejection decision is based on the empirical
distribution obtained from 100,000 simulations under the null hypothesis. For each one of the
alternative hypotheses, returns on two benchmark assets and one test asset are generated using a
multivariate normal distribution and the probability of rejection in 100,000 simulations is plotted.
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Figure 7
Power Function of GMM Wald Tests Under Multivariate Student-t Returns
The figure plots the probability of rejecting the null hypothesis of mean-variance spanning for two
different types of alternative hypotheses using four different GMM Wald tests (J1 to J3 are SDF
based, Wa is regression based). The plots on the left hand side are for alternative hypotheses
with nonzero α, where (α/σ)2 is the improvement of the square of the slope of the tangent line
with a y-intercept equals to zero. The plots on the right hand side are for alternative hypotheses
with nonzero δ, where (δ/σ)2 is the improvement of the reciprocal of the variance of the global
minimum variance portfolio. T is the length of time series observations used in the GMM Wald
test. The significance level of the test is 5% and the rejection decision is based on the empirical
distribution obtained from 100,000 simulations under the null hypothesis. For each one of the
alternative hypotheses, returns on two benchmark assets and one test asset are generated using a
multivariate Student-t distribution with five degrees of freedom and the probability of rejection in
100,000 simulations is plotted.
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Table I
Sizes of Three Asymptotic Tests of Spanning Under Normality

The table presents the actual probabilities of rejection of three asymptotic tests of spanning (Wald (W ),
likelihood ratio (LR), and Lagrange multiplier (LM)), under the null hypothesis for different values of
number of benchmark assets (K), test assets (N), and time series observations (T ). The asymptotic
p-values of all three tests are set at 5% based on the asymptotic distribution of χ2

2N and the actual
p-values reported in the table are based on their finite sample distributions under normality assumption.

Actual Probabilities of Rejection

K N T W LR LM

2 2 60 0.078 0.063 0.048
120 0.063 0.056 0.049
240 0.056 0.053 0.050

5 60 0.123 0.080 0.044
120 0.081 0.063 0.047
240 0.064 0.056 0.049

10 60 0.249 0.125 0.037
120 0.126 0.080 0.044
240 0.082 0.063 0.047

25 60 0.879 0.500 0.015
120 0.422 0.185 0.033
240 0.183 0.099 0.042

5 2 60 0.094 0.076 0.059
120 0.069 0.062 0.054
240 0.059 0.056 0.052

5 60 0.155 0.104 0.060
120 0.092 0.073 0.055
240 0.069 0.060 0.052

10 60 0.315 0.172 0.058
120 0.146 0.095 0.054
240 0.089 0.069 0.052

25 60 0.932 0.638 0.038
120 0.479 0.229 0.047
240 0.203 0.113 0.049

10 2 60 0.126 0.105 0.084
120 0.081 0.073 0.064
240 0.064 0.060 0.057

5 60 0.222 0.159 0.100
120 0.114 0.091 0.070
240 0.077 0.068 0.059

10 60 0.446 0.279 0.118
120 0.186 0.126 0.075
240 0.103 0.081 0.061

25 60 0.981 0.838 0.146
120 0.579 0.315 0.082
240 0.238 0.138 0.063
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Table II
Comparison of Power of Three Tests of Spanning Under Normality

The table presents the probabilities of rejection of Wald, likelihood ratio, and Lagrange multiplier tests
of spanning in 100,000 simulations under the alternative hypotheses when the number of test assets (N)
is equal to 10 and the number of time series observations less the number of benchmark assets (T −K)
is equal to 60. The size of the tests is set at 5% and the alternative hypotheses are summarized by two
measures ω∗

1 and ω∗
2 , where (T −K − 1)ω∗

1 and (T −K − 1)ω∗
2 are the eigenvalues of the noncentrality

matrix THĜ−1. Numbers that are boldfaced indicate the test has the highest power among the three
tests.

Likelihood Ratio Test
ω∗

2 = 0.0 ω∗
2 = 0.3 ω∗

2 = 0.6 ω∗
2 = 0.9 ω∗

2 = 1.2 ω∗
2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0823 0.1251

ω∗
1 = 0.6 0.1226 0.1752 0.2338

ω∗
1 = 0.9 0.1724 0.2307 0.2952 0.3612

ω∗
1 = 1.2 0.2260 0.2913 0.3596 0.4257 0.4913

ω∗
1 = 1.5 0.2834 0.3533 0.4228 0.4897 0.5533 0.6127

Wald Test
ω∗

2 = 0.0 ω∗
2 = 0.3 ω∗

2 = 0.6 ω∗
2 = 0.9 ω∗

2 = 1.2 ω∗
2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0825 0.1243

ω∗
1 = 0.6 0.1241 0.1735 0.2292

ω∗
1 = 0.9 0.1739 0.2289 0.2901 0.3546

ω∗
1 = 1.2 0.2299 0.2905 0.3547 0.4193 0.4834

ω∗
1 = 1.5 0.2902 0.3538 0.4195 0.4829 0.5450 0.6042

Lagrange Multiplier Test
ω∗

2 = 0.0 ω∗
2 = 0.3 ω∗

2 = 0.6 ω∗
2 = 0.9 ω∗

2 = 1.2 ω∗
2 = 1.5

ω∗
1 = 0.0 0.0500

ω∗
1 = 0.3 0.0820 0.1260

ω∗
1 = 0.6 0.1216 0.1754 0.2362

ω∗
1 = 0.9 0.1685 0.2314 0.2981 0.3650

ω∗
1 = 1.2 0.2199 0.2902 0.3617 0.4296 0.4962

ω∗
1 = 1.5 0.2731 0.3496 0.4234 0.4930 0.5589 0.6195
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Table III
Power of Step-Down Test of Spanning Under Normality

The table presents the probabilities of rejection of step-down test for two different alternatives, condi-
tional on the frontier of two benchmark assets is given in Figure 3. The first alternative (∆a = 0.0229)
is a test asset that doubles the slope of the asymptote to the efficient hyperbola of the two benchmark
assets. The second alternative (∆c = 76.69) is a test asset that reduces the standard deviation of the
global minimum-variance portfolio of the two benchmark assets from 4.9%/month to 4.5%/month. The
step-down test is a sequential test. The first test is an F -test on α = 0N and the second test is an
F -test of δ = 0N conditional on the restriction of α = 0N . The null hypothesis of spanning is only
accepted if we accept both tests. α1 and α2 are the significance levels for the first and the second F -test,
respectively. The number of time series observations is 62.

Probability of Rejection

Significance Levels ∆a = 0.0229 ∆a,∆b = 0

α1 α2 ∆b,∆c = 0 ∆c = 76.69

0.00000 0.05000 0.05133 0.91981
0.02532 0.02532 0.16149 0.87008
0.04040 0.01000 0.19416 0.78207
0.04905 0.00100 0.20955 0.51506
0.04914 0.00090 0.20971 0.50289
0.04924 0.00080 0.20986 0.48942
0.04933 0.00070 0.21002 0.47432
0.04943 0.00060 0.21018 0.45715
0.04952 0.00050 0.21033 0.43722
0.04962 0.00040 0.21049 0.41348
0.04971 0.00030 0.21064 0.38398
0.04981 0.00020 0.21080 0.34476
0.04990 0.00010 0.21095 0.28458
0.04995 0.00005 0.21103 0.23337
0.04996 0.00004 0.21104 0.21878
0.04997 0.00003 0.21106 0.20128
0.04998 0.00002 0.21107 0.17904
0.04999 0.00001 0.21109 0.14711
0.05000 0.00000 0.21100 0.05000
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Table IV
Sizes of Small Sample Tests of Spanning Under Nonnormality of Residuals
The table presents the probabilities of rejection of Wald (W ), likelihood ratio (LR), and Lagrange
multiplier (LM) tests of spanning under the null hypothesis when the residuals follow a multivariate
Student-t distribution with five degrees of freedom. The rejection decision is based on 95th percentile of
their exact distributions under normality and the results for different values of the number of benchmark
assets (K), test assets (N), and time series observations (T ) are based on 100,000 simulations.

Actual Probabilities of Rejection

K N T W LR LM

2 2 60 0.048 0.048 0.048
120 0.049 0.050 0.050
240 0.051 0.051 0.051

5 60 0.047 0.048 0.048
120 0.049 0.049 0.049
240 0.050 0.050 0.050

10 60 0.047 0.047 0.047
120 0.046 0.046 0.046
240 0.047 0.049 0.050

25 60 0.046 0.047 0.047
120 0.046 0.046 0.046
240 0.047 0.048 0.048

5 2 60 0.049 0.048 0.048
120 0.051 0.051 0.051
240 0.051 0.051 0.051

5 60 0.047 0.047 0.048
120 0.049 0.049 0.049
240 0.050 0.050 0.050

10 60 0.047 0.047 0.047
120 0.048 0.048 0.048
240 0.049 0.049 0.048

25 60 0.046 0.046 0.047
120 0.046 0.046 0.046
240 0.048 0.048 0.048

10 2 60 0.050 0.049 0.049
120 0.049 0.049 0.049
240 0.051 0.051 0.051

5 60 0.048 0.048 0.048
120 0.049 0.049 0.050
240 0.050 0.051 0.050

10 60 0.048 0.048 0.048
120 0.049 0.049 0.049
240 0.049 0.049 0.049

25 60 0.048 0.048 0.048
120 0.047 0.047 0.047
240 0.047 0.047 0.047
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Table V
Sizes of Spanning Tests Under Multivariate Student-t Returns

The table presents the probabilities of rejection of using regular Wald (W ) and GMM Wald (Wa) tests
of spanning under the null hypothesis when the returns follow a multivariate Student-t distribution
with five and with ten degrees of freedom. The number of benchmark assets is two and they are chosen
to have the same characteristics as the value-weighted and equally weighted market portfolios of the
NYSE. The rejection decisions of the GMM Wald tests are based on 95th percentile of χ2

2N . The table
also presents the average ratio of the two Wald tests and probabilities of rejection using the small sample
version of the Wald tests with the rejection decision based on 95th percentile of their exact distributions
under normality. Results for different values of number of test assets (N) and time series observations
(T ) are based on 100,000 simulations.

Actual Probabilities of Rejection

Average Small Sample

N T W/Wa W Wa W Wa

Degrees of Freedom = 5

2 60 1.862 0.197 0.040 0.150 0.024
120 1.877 0.197 0.036 0.173 0.028
240 1.893 0.208 0.037 0.195 0.033

5 60 1.814 0.329 0.048 0.199 0.018
120 1.834 0.308 0.036 0.242 0.022
240 1.855 0.317 0.035 0.283 0.028

10 60 1.787 0.560 0.086 0.246 0.013
120 1.808 0.472 0.044 0.320 0.017
240 1.835 0.459 0.035 0.383 0.022

25 60 1.762 0.979 0.553 0.270 0.008
120 1.775 0.848 0.118 0.417 0.009
240 1.803 0.755 0.044 0.538 0.013

Degrees of Freedom = 10

2 60 1.168 0.116 0.073 0.079 0.046
120 1.167 0.099 0.060 0.082 0.047
240 1.167 0.094 0.055 0.086 0.048

5 60 1.167 0.192 0.109 0.091 0.043
120 1.166 0.147 0.076 0.099 0.047
240 1.167 0.128 0.062 0.106 0.049

10 60 1.166 0.372 0.221 0.103 0.043
120 1.166 0.241 0.116 0.120 0.046
240 1.167 0.185 0.079 0.128 0.048

25 60 1.165 0.943 0.851 0.113 0.039
120 1.165 0.635 0.377 0.150 0.041
240 1.166 0.407 0.166 0.175 0.044
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Table VI
Sizes of GMM Wald Tests of Spanning Under Multivariate Normal Returns
The table presents the probabilities of rejection of three SDF based (J1 to J3) and a regression based
GMM Wald (Wa) tests of spanning under the null hypothesis with the returns follow a multivariate
normal distribution. The rejection decision is based on 95th percentile of their asymptotic distributions
of χ2

2N , and the results for different values of number of benchmark assets (K), test assets (N), and
time series observations (T ) are based on 100,000 simulations.

Actual Probabilities of Rejection

K N T J1 J2 J3 Wa

2 2 60 0.064 0.086 0.097 0.114
120 0.054 0.065 0.071 0.078
240 0.050 0.055 0.058 0.063

5 60 0.120 0.189 0.218 0.260
120 0.072 0.103 0.114 0.137
240 0.056 0.070 0.075 0.087

10 60 0.366 0.543 0.596 0.658
120 0.135 0.224 0.254 0.308
240 0.075 0.110 0.121 0.150

25 60 1.000 1.000 1.000 1.000
120 0.751 0.908 0.929 0.952
240 0.252 0.439 0.482 0.573

5 2 60 0.075 0.099 0.110 0.132
120 0.060 0.072 0.075 0.087
240 0.053 0.059 0.061 0.067

5 60 0.147 0.221 0.250 0.305
120 0.083 0.116 0.125 0.153
240 0.061 0.076 0.079 0.093

10 60 0.428 0.598 0.648 0.722
120 0.157 0.251 0.276 0.342
240 0.085 0.122 0.131 0.164

25 60 1.000 1.000 1.000 1.000
120 0.785 0.924 0.941 0.964
240 0.274 0.464 0.496 0.602

10 2 60 0.103 0.130 0.145 0.172
120 0.069 0.082 0.087 0.099
240 0.058 0.064 0.066 0.072

5 60 0.206 0.285 0.325 0.395
120 0.102 0.137 0.151 0.183
240 0.070 0.085 0.089 0.104

10 60 0.539 0.686 0.747 0.821
120 0.196 0.298 0.327 0.402
240 0.096 0.137 0.147 0.183

25 60 1.000 1.000 1.000 1.000
120 0.842 0.947 0.960 0.980
240 0.314 0.505 0.537 0.643
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