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Abstract

Multivariate regressions (MR) are among the simplest empirical models of finan-
cial econometrics. It is well known however that despite their simple statistical
structure, standard asymptotically justified MR-based tests are unreliable. Exact
tests have been proposed for a few specific hypotheses [e.g. Gibbons, Ross and
Shanken (Econometrica 1989), Shanken (Journal of Finance 1986), Velu and Zhou
(Journal of Empirical Finance 1999), Stewart (Econometric Reviews 1997)], most
of which depend on normality. In this paper, we propose likelihood based exact
market-model tests for possibly non-linear hypotheses, allowing for a wide class of
error distributions which include normality as a special case. The proposed test
procedures are computationally attractive and may be easily obtained by simula-
tion. For the Gaussian model, our test results serve to unify existing results on
efficiency tests. In non-Gaussian contexts, we re-consider efficiency tests allowing
for multivariate student-t errors and unknown zero-beta rate. In this case, we pro-
pose a set estimate for the intervening degrees-of-freedom parameter, which serves
to devise a confidence-set based exact Monte Carlo test.



1 Introduction

Multivariate regressions (MR) are among the simplest empirical models of financial
econometrics. The most familiar MR applications in finance include market-models
such as the capital asset pricing model (CAPM), which may be traced back to Gib-
bons (1982) and Gibbons, Ross and Shanken (1989, GRS) [GRS]. The associated
empirical literature which has evolved since Gibbons’ seminal work is enormous;
recent references can be found in Campbell, Lo and MacKinlay (1997).

Despite the simplicity of their statistical structure, there are good reasons for
skepticism regarding the reliability of standard test procedures in MR contexts.
Indeed, a number of Monte Carlo studies (see for example Dufour and Khalaf
(1998), Stewart (1997), Campbell et al. (1997) and the references cited therein)
have provided extensive evidence that MR-tests can be severely biased towards
over-rejection. These difficulties find their origin in the fact that the interven-
ing exact null distributions typically depend on nuisance parameters - e.g. the
error covariance parameters - whose number increases rapidly with the system’s
dimension.

Although most MR-tests are large-sample based, exact tests have been pro-
posed for a few specific hypotheses. Well known procedures include the exact
efficiency test proposed by Gibbons et al. (1989) for the observable risk-free rate
case. Specifically, GRS used the Hotelling-T 2 statistic, which may be transformed
into an F-distributed statistic, to test the joint significance of the MR-CAPM in-
tercepts. See also Stewart (1997) for more recent work on exact F tests in finance.

In CAPM contexts which assume unobservable risk-free rate, two exact bounds
tests have been independently proposed for the same (non-linear) problem, namely
testing the efficiency hypothesis in a multi-factor MR-CAPM. The first bound is
due to Shanken (1986) and has recently been the subject of renewed attention;
see Campbell et al. (1997) (chapter 5). The second bound which is developed in
Stewart (1997) is directly based on Dufour (1989)’s conservative bound test. The
relation between these bounds remains unexplored. Zhou (1991) and ? proposed
a bounds test which is tighter than the latter two, yet depends importantly on
Gaussianity.

As a matter of fact, all the exact distributional results just cited are condi-
tional on the normality assumption. Zhou (1993) reconsidered the GRS problem
under elliptical distributions and provided simulation-based test procedures which
exploit exact invariance results. Although nuisance parameters are not completely
accounted for by Zhou (1993), to the best of our knowledge, no other exact results
are available which do not impose gaussianity.

In a different vein, Dufour and Khalaf (1998) have recently proposed several
general exact test procedures for MR models. In particular, they considered the
Wilks statistic, defined as the ratio of the determinants of the constrained and
unconstrained sum of squared error matrices. For a specific class of hypotheses



which take the Uniform Linear (UL) form (see e.g. Stewart (1997)), they propose
an exact simulation-based Wilks test without the normality assumption. They also
show how to obtain an exact bounds Wilks test for general, possibly non-linear
non-gaussian hypotheses. In this paper, we discuss how to apply these results to
asset pricing tests. We restrict primary focus to the efficiency hypothesis, in view
of its fundamental importance.

The paper makes three main contributions. First, we show that both Shanken’s
and Stewart’s bounds obtain as a special case of the bound proposed by Dufour and
Khalaf (1998). Our analysis further reveals that Shanken’s and Stewart’s bounds
are in fact equivalent, a point which seems to have escaped notice. Secondly,
we extend the latter efficiency tests beyond the Gaussian model; the elliptical
distributions assumed by Zhou (1993) are included as a special case. Thirdly, for
the multivariate student t-error distribution, we propose a formal method which
deals with the degrees-of-freedom nuisance parameter problem. To do this, we
provide an exact set estimate for the parameter. The latter is then used to obtain
a confidence-set-based exact Monte Carlo test; see Dufour and Kiviet (1996) and
Dufour (1995).

The tests proposed are applied to market efficiency problems with unknown
risk-free rates. We consider monthly returns on New York Stock Exchange (NYSE)
portfolios, which we construct from the University of Chicago Center for Research
in Security Prices (CRSP) 1926-1995 data base.

The paper is organized as follows. Section 2 briefly reviews the exact MR tests
proposed by Dufour and Khalaf (1998). Section 3 considers the existing efficiency
tests and suggests extensions to non-normal models. Section 4 presents the case
of multivariate t-errors with unknown degrees of freedom. In Section 5, we report
the empirical application and section 6 concludes.

2 General multivariate regressions tests

The multivariate regression (MLR) model is of the form

Y = XB + U (2.1)

where Y = [Y1, ... , Yp] is n×p, X is n×K with rank K and is assumed fixed, and
U = [U1, . . . , Up] = [Ũ1, . . . , Ũn]′ is an n × p matrix of random disturbances.
For further reference, let B = [b1, . . . , bp], bj = (b0j , b1j . . . , bsj)′, j = 1, . . . , p
where s = K−1. The bounds derived by Dufour and Khalaf (1998) further assume

Ũi = JWi , i = 1, . . . , n , (2.2)

where the vector w = vec(W1, . . . , Wn) has a known distribution and J is an
unknown, non-singular matrix. In this context, the covariance matrix of Ũi, which
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is denoted Σ, is JJ ′and is invertible. The latter distributional assumption includes
normality as a special case. It is well known that in this context, the OLS estimator

B̂ = (X ′X)−1X ′Y

corresponds to the Gaussian unconstrained maximum likelihood estimator (MLE).
For further reference, let

Σ̂ = (Y −XB̂)′(Y −XB̂)/n

denote the associated (unconstrained) estimate of Σ.
For convenience, rewrite the model as

y = (Ip ⊗X)b + u (2.3)

where y = vec(Y ), b = vec(B), and u = vec(U), and consider the general hypoth-
esis

H0 : Rb ∈ ∆0 (2.4)

where R is a q× (pK) matrix of rank q, and ∆0 is a non-empty subset of Rq. The
associated LR statistic is:

LR = n ln(L) , L = |Σ̂0|/|Σ̂| (2.5)

where Σ̂0 is the constrained MLE of Σ. The statistic L corresponds to the inverse
of the well known Wilks statistic.

In the present paper, we will exploit the following distributional results from
Dufour and Khalaf (1998) pertaining to (2.4) and a special case of the latter which
takes the following form

H01 : RBC = D (2.6)

whereR is an r×K matrix of rank r, C is a p×c matrix of rank c. On observing that
(2.6) corresponds to (C′ ⊗R) b = vec(D), it is clear that not all linear hypotheses
can be cast in the UL form.

Theorem 1 Under (2.1), (2.2) and (2.6),Wilks’ statistic

Λ = |Σ̂01|/|Σ̂| (2.7)

where Σ̂01 and Σ̂ are constrained unconstrained MLE of Σ, is distributed like
∣∣∣W ′M̃W

∣∣∣ /
∣∣∣W ′M̃0W

∣∣∣ (2.8)

with

M̃0 = M̃ − X̃(X̃ ′X̃)−1R′[R(X̃ ′X̃)−1R′]−1R(X̃ ′X̃)−1X̃ ′,

M̃ = I − X̃(X̃ ′X̃)−1X̃,

X̃ = XC,
and W = [W1, . . . , Wp] is defined by (2.2).
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Now using the latter result, it is easy to obtain simulated values of the test
statistic under the null hypothesis and (2.2). These may be used to obtain an
exact test, as follows (see also Dufour and Khalaf (1999)).

1. Let Λ0 denote the observed test statistic.

2. By Monte Carlo methods and for a given number N of replications, draw
W j = [W j

1 , . . . , W j
p ], j = 1, ..., N , conforming with (2.2).

3. From each simulated error matrix W j , compute the statistics
∣∣∣W j′M̃W j

∣∣∣ /
∣∣∣W j′M̃0W

j
∣∣∣ , j = 1 , . . . , N,

as defined in Theorem 1, (2.8).

4. Compute the rank R̂N (Λ0) of Λ0 in the series Λ0, Λ1, ..., ΛN . Then reject
the null hypothesis at level α, when

p̂N (Λ0) ≤ α, (2.9)

p̂N (Λ0) = 1− R̂N (Λ0)− 1
N + 1

.

For certain values of r and c and normal errors, the null distribution in question
reduces to the F distribution. For instance, if min(r, c) ≤ 2, then

[
(Λ1/τ − 1)

] ρτ − 2λ

rc
∼ F (rc , ρτ − 2λ) (2.10)

where

λ =
rc− 2

4

ρ = n−K − (c− r + 1)
2

,

τ =

{ (
(r2c2 − 4)/(r2 + c2 − 5)

)1/2

1
, if r2 + c2 − 5 > 0
, otherwise

.

Further, the special case r = 1 leads to the Hotelling’s T 2 criterion which is a
monotonic function of Λ. If r > 2 and c > 2 , then the distributional result
(2.10) holds asymptotically [Rao (1973, Chapter 8)]. Stewart (1997) provides an
extensive discussion of these special F tests.

Of course, these results are restricted to UL hypotheses of the form (2.2). It is
well known however that beside this specific hypothesis class, the null distribution
of the LR statistic is not nuisance-parameter-free. Let us now consider the general
hypothesis H0 as defined by (2.4).

4



Theorem 2 Under (2.1), (2.2) and (2.4), the null distribution of Wilks’ statistic
L defined by (2.5) may be bound as follows

P [L ≥ x] ≤ P [Λ∗ ≥ x], ∀x,

Λ∗ = |Σ̂02|/|Σ̂| , (2.11)

where Σ̂ is the unconstrained MLE, Σ̂02 is the MLE under UL restrictions of the
form

H02 : R∗BC∗ = D∗ (2.12)

R∗ is an r∗ ×K matrix of rank r∗, C∗ is a p× c∗ matrix of rank c∗, and

H02 ⊂ H01. (2.13)

In other words, if λ∗(α) is the α-level cut-off point obtained (as in Theorem 1)
such that P [Λ∗ ≥ λ∗(α)] = α, then under the null hypothesis P [L ≥ λ∗(α)] ≤ α.
For further reference, we will call H02 the ”bounding null”. Λ∗ is the inverse of
the Wilks’ statsicti to test H02, which is UL (i.e. of the form (2.6)). It is easy to
see that (2.13) implies

L ≤ Λ∗ (2.14)

which establishes the desired bound. For simulation purposes, it is useful to rewirte
the latter resut using Theorem 1, as follows.

Corollary 3 Under (2.1), (2.2) and (2.4), the null distribution of Wilks’ statistic
L defined by (2.5) may be bound as follows

P [L ≥ x] ≤ P

[ |WM∗W |
|W ′M∗

0 W | ≥ x

]
, ∀x, (2.15)

where

M∗
0 = M − X̃∗(X̃ ′

∗X̃∗)−1R′∗[R∗(X̃ ′
∗X̃∗)−1R′∗]−1R∗(X̃ ′

∗X̃∗)−1X̃ ′
∗,

M∗ = I − X̃∗(X̃ ′
∗X̃∗)−1X̃ ′

∗,
X̃∗ = XC∗,

R∗ is an r∗ ×K matrix of rank r∗, C∗ is a p× c∗ matrix of rank c∗, which satisfy

H02 : R∗BC∗ = D∗,
H02 ⊂ H01,

and W = [W1, . . . , Wp] is defined by (2.2).

A bounds MC p-value (BMC) may then be obtained by simulation under (2.2),
as follows.

1. Let L0 denote the observed test statistic.
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2. By Monte Carlo methods and for a given number N of replications, draw
W j = [W j

1 , . . . , W j
p ], j = 1, ..., N , conforming with (2.2).

3. From each simulated error matrix W j , compute the ”bounding” statistics∣∣∣W j′M∗W j
∣∣∣ /

∣∣∣W j′M∗
0 W j

∣∣∣, j = 1 , . . . , N , as defined in Corollary 3,
(2.15).

4. Obtain the rank R̂∗
N (L0) of L0 in the series L0, Λ∗1, ..., Λ∗N . Then the

bounds α-level critical region corresponds to

p̂∗N (L0) ≤ α, (2.16)

p̂∗N (L0) = 1− R̂∗
N (L0)− 1
N + 1

.

In Gaussian models where min(r, c) ≤ 2, the bounds p-value may be obtained
from the F distribution using (2.10).We proceed next to present the bounds tests
proposed by Shanken (1986) and Stewart (1997) in CAPM contexts and show that
these bounds obtain straightforwardly using the BMC test strategy underlying
Theorem 2.

3 Efficiency tests: the case where error distributions
are specified up to a scale matrix

A fundamental problem in financial economics involves testing the efficiency of a
candidate benchmark portfolio. Let Rij , j = 1, . . . , p, be returns on p securities
for period i, i = 1, ... , n and R̃ik, k = 1, ... , s the returns on the s benchmark
portfolios under consideration. A crucial assumption which further determines
the econometric problem is whether the riskless rate of returns are observable or
need to be estimated form the data. We consider both models in what follows.
Throughout this section, we impose (2.2).

3.1 Observable risk-free rate

If it is assumed that a riskless asset RF exists, then efficiency can be tested using
the MLR model (2.1) with Y = [r1, ... , rp], X = [ιn, r̃1, ... , r̃s], where rj =
(r1j , ... , rnj)′, r̃k = (r̃1k, ... , r̃nk)′ and rij = Rij − RF

i , r̃ik = R̃ik − RF
i , or

alternatively:

rij = b0j +
∑s

k=1 bkj r̃ik + Uij , i = 1, ..., n, j = 1, ..., p . (3.1)

The hypothesis of efficiency implies that

HLCAPM : b0j = 0, j = 1, . . . , p, (3.2)
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i.e. the model intercepts b0j are jointly equal to zero, which may be expressed, in
UL form, as follows:

(1, 0, ...., 0)B = 0. (3.3)

With respect to the above general framework, observe that HLCAPM (3.3) is
of the UL form (2.6) with C = Ip, D = 0 and R is the K-dimensional row vector
(1, 0, ...., 0). Conformably, the LR statistic to test (3.3) obtains as in (2.7)

LR = n ln(Λ), Λ = |Σ̂LCAPM |/|Σ̂| (3.4)

where Σ̂LCAPM is the MLE under HLCAPM (3.3). Then using Theorem 1, the null
distribution of LR can be characterized for all error distributions which satisfy
(2.2), as follows.

Theorem 4 Under (3.1), (2.2) and (3.2), the LR statistic defined by (3.4) is dis-
tributed like

n ln(
∣∣W ′MW

∣∣ /
∣∣W ′M0W

∣∣)
where W = [W1, . . . , Wp] is defined by (2.2)

M = I −X(X ′X)−1X ′,
M0 = M −X(X ′X)−1R′[R(X ′X)−1R′]−1R(X ′X)−1X ′,

and R is the K-dimensional row vector (1, 0, ...., 0).

Alternatively, of course, M0 may be obtained as I − Xs(X ′
sXs)−1X ′

s, where
Xs = [r̃1, ... , r̃s]. Based on the latter Theorem, as shown above, a MC p-
value may be obtained by simulation for error distributions which satisfy (2.2).
Recall that to obtain the MC p-value, one only needs to simulate the matrix
W = [W1, . . . , Wn]′ which underlies (2.2). Here, an important special case is
the multivariate t-distribution with known degrees-of-freedom. To draw W from
a multivariate t with κ degrees of freedom, one may proceed as follows. Generate
Wi (the rows of W ) independently as

Wi = Zi/(Ci/κ)1/2 (3.5)

where Zi is multivariate normal (0, Ip) and Ci is a χ2(κ) variate independent from
Zi.

Under Gaussian errors, Theorem 4 and (2.10) imply that

(Λ− 1)
(n− s− p)

p
∼ F (p, n− s− p) ,

which yields the Hotelling T 2 test proposed by Gibbons et al. (1989). Specifically,
GRS suggest the following test statistic:

Q =
nα̂′Ŝ−1α̂

1 + r′∆̂−1r
(3.6)
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where α̂ is the vector of intercept OLS estimates, Ŝ = n
n−K Σ̂ is the OLS-based

unbiased estimator of Σ, r and ∆̂ include respectively the time-series-means and
sample covariance matrix corresponding to the right-hand-side portfolio returns.1

Under (3.3), Q has the Hotelling T 2(p, n− s− 1) distribution or alternatively,

Q(n− s− p)
p(n− s− 1)

∼ F (p, n− s− p) . (3.7)

As argued above [see also Stewart (1997)] Λ is related to the GRS criterion
as follows:

Λ− 1 =
Q

n− s− 1
. (3.8)

We thus see that the GRS results obtains from Theorem 4 under the special case
of normal errors.

Zhou (1993) considers GRS’s problem in models with elliptical distributions;
the multivariate student t distribution is included as an example. In this con-
text, the author demonstrates location/scale invariance of the GRS-type efficiency
test statistic and exploits this property to derive simulation based p-values.2 The
”Monte Carlo integration technique” proposed to do this is highly related to MC
tests. Although the method is presented, rather heuristically, as an exact pro-
cedure, the nuisance parameter problem is not completely dealt with by Zhou
(1993). For instance, in the multivariate student t case, it is evident that the asso-
ciated degrees-of-freedom do intervene in the null distribution of the test statistic.
Location-Scale invariance yields pivotality (thus exactness) for known degrees-of-
freedom. We reconsider this case formally in the next section.

Before we turn to other hypotheses, it is useful to point out an interesting
diagnostic test from Zhou (1993). The author implements the same Monte Carlo
integration technique proposed for the efficiency test, to obtain p-values for mul-
tivariate skewness and kurtosis tests. A note explains that the ensuing procedure
is not strictly exact because it is residuals based. In other words, the author does
not recognize that the invariance properties which were shown to hold in the case
of the efficiency tests may also be exploited with multivariate normality tests. In
the following section, we formally reconsider these tests, and show how to obtain
relevant exact p-values. We also use the criteria to devise a confidence set for the
intervening degrees of freedom under multivariate student t error distributions.

1MacKinlay (1987) proposes a similar statistic in the context of the single beta CAPM.
2See also Zhou (1991). In both articles, the LR statistic is expressed in terms of the roots

of a determinantal equation that depends only on the constrained and unconstrained residuals
cross-products. From there on, location-scale invariance is proved without the normal assumption.
This is the same approach underlying Theorem 1, with the exception that the latter result is not
restricted to efficiency tests.
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3.2 Unknown risk-free rate

The econometric analysis is more complicated when the zero beta intercept is
unknown and must be inferred using the return data [see, for example Gibbons
(1982)]. In this case, efficiency is usually tested in the context of a total-returns
CAPM based on (2.1) with Y = [R1, ... , Rp], X = [ιn, R̃1, ... , R̃s] where
Rj = (R1j , ... , Rnj)′ and R̃k = (R̃1k, ... , R̃nk)′:

Rij = b0j +
∑s

k=1 bkjR̃ik + Uij , i = 1, ..., n, j = 1, ..., p . (3.9)

The relevant null hypothesis is non-linear and takes the following form

HCAPM : b0j = γ

(
1−

s∑

k=1

bkj

)
, j = 1, . . . , p, (3.10)

or alternatively
(1, γ, ...., γ)B = γι′p

where γ is the unknown zero-beta intercept and ιp refers to a p-dimensional vector
of ones.

Let L denote the statistic from (2.5) to test (3.10):

LR = n ln(L) , L = |Σ̂CAPM |/|Σ̂| (3.11)

where Σ̂CAPM is the MLE under HCAPM (3.10). For all error distribution under
(2.2), the problem of testing HCAPM satisfies the assumptions of Theorem 2, which
implies the following exact distributional result.

Theorem 5 Under (3.9), (2.2) and (3.10), the null distribution of Wilks’ statistic
L defined by (3.11) may be bound as follows

P [L ≥ x] ≤ P [Λ∗ ≥ x], ∀x,

where
Λ∗ = |Σ̂02|/|Σ̂| , (3.12)

Σ̂ is the unconstrained MLE, Σ̂02 is the MLE under UL restrictions of the form

H02 : b0j = γ0

(
1−

s∑

k=1

bkj

)
, j = 1, . . . , p, (3.13)

and γ0 is any known constant.

Indeed, to implement Theorem 2, we need to come up with a UL hypothesis
which is a special case of HCAPM (3.10). When γ = γ0 and γ0 is known, (3.10)
is UL. Furthermore, testing (3.10) where γ = γ0 and γ0 is known in the context
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of the total-returns market model corresponds to testing the GRS null hypothesis
(3.3) in an excess-returns model where the risk-free rate is γ0.

Now applying Theorems 4-5 and (2.10) leads to the following bound

P [((n− s− p) (L− 1)) /p ≥ x] ≤ P [F (p, n− s− p) ≥ x], ∀x,

if the normality assumption is imposed. We will next use these results to study
the bounds proposed by Shanken (1986) and Stewart (1997).

Shanken (1986) employs the statistic Q(γ̂), where, in the context of a total-
returns CAPM,

Q(γ) =
nα̂′(γ)Ŝ−1α̂(γ)

1 + (R− γιs)′∆̂−1(R− γιs)
,

γ̂ = ARGMIN
γ

Q(γ) , α̂(γ) = â− γ(ιp − B̂(s)ιs) , (3.14)

â is the p-dimensional vector of OLS intercept estimates, B̂(s) is the (p × s) sub-
matrix of B̂, the OLS estimates matrix, which excludes intercepts, Ŝ is the unbi-
ased estimate of Σ, R and ∆̂ include respectively the time-series-means and sam-
ple covariance matrix corresponding to the right-hand-side total-portfolio-returns.
Shanken shows that:

1. the LR statistic for testing (3.10) is a transformation of Q(γ̂), specifically

LR = n ln
(

1 +
Q(γ̂)

n− s− 1

)
, (3.15)

2. γ̂ is the constrained MLE of γ, and

3. the null distribution of Q(γ̂) may be bounded by the Hotelling T 2(p, n −
s− 1) distribution, or alternatively ((n− s− p)Q(γ̂)) / (p(n− s− 1)) can be
bounded by the F (p, n− s− p) distribution.

Independently, Stewart (1997) shows that the statistic ((n− s− p) (L− 1)) /p
can be bounded by the F (p, n−s−p) distribution. The latter results is obtained ap-
plying (2.10) to Dufour (1989)’s conservative bounds test procedure. From (3.11)-
(3.15) it is evident that: (i) Shanken and Stewart’s bounds are equivalent, and (ii)
both results obtain from Theorem 5 under the special case of normal errors.

It is important to recall that Theorem 5 extends the Shanken-Stewart bounds
beyond the Gaussian context. As described in section 2 (see Corollary 3), the cor-
responding BMC p-value may be easily obtained by simulation. For this problem,
no other exact test seems available. Finally, note that in the BMC algorithm, one
only needs to draw the matrix W . The choice for γ0 is practically irrelevant. To un-
derstand this point, reconsider the Gaussian model. In this case, it is evident that
the reasoning which relates the bound from Theorem 5 to the Shanken-Stewart
bound does not depend on the value of γ0. Indeed, the bounding distribution
under normality is F (p, n− s− p), ∀ γ0.
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4 Efficiency tests: the case of multivariate-t error dis-
tributions with unknown degrees-of-freedom

In this section, we extend the above results to a distributional family of partic-
ular interest: the case of multivariate-t errors with unknown degrees-of-freedom.
Specifically, we suppose that the rows of the error matrix are distributed indepen-
dently as in (3.5). The proposed procedure applies to problems with observable or
unknown risk-free rate.

At this stage, two points deserve notice. First, as noted above, for a given
κ, the distributional hypothesis underlying (3.5) satisfies (2.2). Thus the MC p-
values associated with both Theorems 4 and 5 is exact for given κ. Secondly,
whether κ is viewed (from an empirical perspective) as a parameter of interest or
a nuisance parameter, it is important, for the precision of the efficiency test, to
devise a decision rule which takes κ explicitly into consideration. Otherwise, level
control may not hold.

Here we propose a solution based on the finite sample test approach proposed by
Dufour and Kiviet (1996). The method requires the application of two sequential
techniques: (1) an exact confidence set for κ, and (2) the MC test technique
presented above, maximized over-all values of κ in the latter confidence set. It
is important to note that if an overall α-level test is desired, then the pre-test
confidence set and the maximized Monte Carlo test should be applied with levels
(1− α1) and α2, respectively, so that

α = α1 + α2.

In empirical application considered next, we use α1 = α2 = α/2.
To set focus, let us refer to the (1 − α1) confidence set for κ as C(y) where

y denotes the returns data (as in e.g. (2.3)). Since a procedure to derive such
a confidence set is not available, we provide one in what follows. Observe that,
in principle, C(y) needs not be bounded. We then present the maximized MC
algorithm. Since the latter procedure is not specific to our proposed confidence
set, our presentation will thus be expressed in terms of any valid C(y). For proofs
and further references, see Dufour and Kiviet (1996) and Dufour (1995).

4.1 A confidence set for the degrees-of-freedom parameter

We now present an explicit set estimation method to obtain C(y), which builds
on Zhou (1993). Using the multivariate skewness and kurtosis criteria applied by
Zhou (1993), we first propose a formal test for κ = κ0, where κ0 is any known
integer. The test is then ”inverted” to obtain a confidence set for κ.
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The skewness and kurtosis criteria in question are:

sk =
1
T 2

T∑

i=1

T∑

j=1

d̂3
ij , (4.1)

ku =
1
T

T∑

i=1

d̂4
ii, (4.2)

where d̂ij are the elements of the matrix

D̂ = Û(Û ′Û)−1Û ′, Û = Y −XB̂.

The latter statistics where introduced by ? in a location-scale model (the case
where the regressor matrix reduces to a vector of ones) to assess deviations from
multivariate normality. Zhou (1993) argues that these criteria may serve to test for
departures from a multivariate t(κ)-distribution, if cut-off points are appropriately
”approximated”, e.g. by simulation, imposing t(κ) errors. In view of this, the
author estimates the degrees-of-freedom as follows: a few values for κ are retained
by trial-and-error techniques (no further details are provided); then (modified)
skewness and kurtosis tests are applied which confirm that the values retained do
not yield significant lack-of-fit.

To devise an inference procedure which formalizes the above technique, we
first prove an important invariance property regarding residuals based skewness
and kurtosis tests.

Proposition 6 Under (2.1), and for all error distributions compatible with (2.2),
the multivariate skewness and kurtosis criteria (4.1) and (4.2) are distributed, re-
spectively, like 1

T 2

∑T
i=1

∑T
j=1 d3

ij and 1
T

∑T
i=1 d4

ii, where dij are the elements of the
matrix MW (W ′MW )−1 W ′M , M = I −X(X ′X)−1 X ′, W is defined by (2.2).

PROOF: On observing that
Û = MU

it is straightforward to see that

D̂ = MU(U ′MU)−1U ′M
= MU(J−1)′J ′(U ′MU)−1J(J−1)U ′M

= MU(J−1)′
(
(J−1)U ′MU(J−1)′

)−1 (J−1)U ′M

= MW
(
W ′MW

)−1
W ′M.

Since (2.2) implies that W has a known distribution, it follows that D̂ (and
consequently sk and ku) are nuisance-parameter invariant.3 On the basis of this

3In the literature on multivariate normality tests, this property is recognized (under Gaussian-
ity) in location-scale models. Here we show that nuisance parameter invariance holds even though
residuals (rather then observables) are used to construct the tests, and for all error distributions
which satisfy assumption (2.2). As noted above, Zhou (1993) does not formally recognize the
pivotality property we exploit here, in the case of residuals based tests.
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result, we propose the following skewness-and-kurtosis based statistics to test κ =
κ0:

esk(κ0) =
∣∣sk−sk(κ0)

∣∣ , (4.3)

eku(κ0) =
∣∣ku−ku(κ0)

∣∣ , (4.4)

where sk(κ0) and ku(κ0) are simulation-based estimates of the expected sk and ku
given t(κ0) errors. These may be obtained as follows, given κ0.

A1. For a given number N of replications, draw W j = [W j
1 , . . . , W j

p ], j =
1, ...,N, conforming with (3.5).

A2. From each simulated error matrix W j , compute

D̂j = MW j
(
W j′MW j

)−1
W j′M,

j = 1 , . . . , N. These provide N replications of sk and ku, applying (4.1)
and (4.2), namely skj and kuj .

A3. Then calculate

sk(κ0) =
∑N

j=1 skj /N, ku(κ0) =
∑N

j=1 kuj /N

The question is of course how to obtain exact cut-off points for (4.3) and (4.4).
As in sections 2-3, we suggest to apply a Monte Carlo test method, which may be
run as follows, given κ0.

B1. Let esk0 and eku0 denote the observed test statistics.

B2. For a given numberM of replications, and independently from the simulation
performed to obtain sk(κ0) and ku(κ0) (i.e. step A2. above), draw Wm =
[Wm

1 , . . . , Wm
p ], m = 1, ...,M, conforming with (3.5).

B3. From each simulated error matrix Wm, compute

D̂m = MWm
(
Wm′MWm

)−1
Wm′M |,

j = 1 , . . . , M. Conformably, derive, applying (4.1) and (4.2), M replica-
tions of sk and ku, skm and kum.

B4. Conditioning on sk(κ0) and ku(κ0) (generated only once as in steps (A1-
A3)), obtain, applying (4.3) and (4.4), M replications of esk and eku, eskm

and ekum.
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B5. Obtain (respectively) the ranks R̂M(esk0) and R̂M(eku0) of esk0 and eku0

in the series {
esk0, esk1, ..., eskM

}

and {
eku0, eku1, ..., ekuM

}
.

Then MC p-values correspond to

p̂M(esk0 |κ0) = 1− R̂M(esk0)− 1
M+ 1

,

p̂M(eku0 |κ0) = 1− R̂M(eku0)− 1
M+ 1

,

where the conditioning on κ0 is emphasized for further reference.

It is important to note at this stage that although the same value sk(κ0) and
ku(κ0) is used for all replications of the modified test statistics, the latter remain
exchangeable, which provides, along with Proposition 1, the necessary conditions
for the validity of the MC p-values in B5 ; see Dufour (1995).

The tests just outlined are interesting for their own right, since procedures to
formally test κ = κ0 seem lacking. Now to obtain the confidence set, we propose
to ”invert” the latter tests (jointly). Specifically, the confidence set we retain for
κ corresponds to the values 1 ≤ κ0 ≤ T −K − p, where p̂M(eku0 |κ0) > α11 and
p̂M(esk0 |κ0) > α12, and α11 and α12 are chosen such that α11+ α12 = α1.

Although concerns regarding the possible conservative character of the above
inference procedure may not be ruled out, the confidence set is definitely an im-
provement over available trial and error methods. From the results reported below,
we do observe that the estimated confidence set are quite wide, yet the associated
efficiency test decision is not adversely affected.

Finally, note that improved (exact) versions of Mardia’s multi-normality tests
may also be obtained as outlined above if the underlying W matrices are drawn
from a multivariate normal distribution. In the empirical application presented
next, we perform these tests which we denote SK and KU .

4.2 The maximized Monte Carlo p-value

Let us now present the maximized MC algorithm. ∀κ ∈ C(y), and applying The-
orem 4 or 5 (depending on the hypothesis of interest), one may obtain the MC
p-values p̂N (Λ0|κ) or p̂∗N (L0|κ) [see (2.9) and (2.16)]. For ease of presentation, let
us refer to the p-value of interest p̂MC(κ). Let

QU (κ) = sup
κ∈C(y)

p̂MC(κ), (4.5)
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and then critical region
QU (κ) ≤ α2 (4.6)

is exactly of level α1 +α2.The associated test is conservative in the following sense:
if indeed QU (κ) ≤ α2 for the sample at hand, then the test is most certainly
significant. For further reference, the values of κ ∈ C(y) where p̂MC(κ) = QU (κ)
are denoted CU (y).

The maximization problem underlying QU (κ) may be computer intensive in
general applications of this method. In this case however, κ takes only integer
values and the statistic underlying the p-value are straightforward to simulate.4

To conclude, we re-iterate the arguments from (Dufour (1989)), (Dufour (1997))
and Dufour and Khalaf (1998) on the conservative character of such bounds tests.
Since the bound is so easy to use, we recommend to implement it in conjunction
with, and not necessarily as an alternative to, e.g. bootstrap or Maximized Monte
Carlo tests. Indeed, a significant bounds test is compelling. Thus, one may run
the bounds procedure first then proceed if necessary to alternative tests.

5 Empirical application

To illustrate the above results, we present an empirical application on a CAPM
test with an unknown risk-free rate. Conforming with the notation set above,
we use a total-returns CAPM as defined in section 3.2 with a single benchmark
portfolio. The model at hand is (2.1) with Y = [R1, ... , Rp], X = [ιn, R̃M ] where
Rj are the vectors of portfolio returns under consideration and R̃M is the vector
of returns on the market benchmark. The relevant null hypothesis is

(1, γ)B = γι′p (5.7)

or alternatively
b0j = γ(1− b1j), j = 1, . . . , p.

We use nominal monthly returns over the period going from January 1926 to
December 1995, obtained from the University of Chicago’s Center for Research in
Security Prices (CRSP). As in ?, our data includes 12 portfolios of New York Stock
Exchange (NYSE) firms grouped by standard two-digit industrial classification
(SIC). Real returns are computed using the consumer price index. Table 1 provides
a list of the different sectors used as well as the SIC codes included in the analysis.
For each month the industry portfolios are comprised of those firms for which the
return, price per common share and number of shares outstanding are recorded
by CRSP. Furthermore, the portfolios are value-weighted in each month. In order

4In the case of HCAPM (3.10) an alternative exact test (which might be ”less” conservative)
is the maximized Monte Carlo test based on L (rather than its bound) as proposed by (Dufour
(1995)). However, the relevant nuisance parameter list in this case will not be restricted to κ,
which may complicate the maximization problem importantly.
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to test the CAPM, we proxy the market return with the value-weighted NYSE
return, also available from CRSP.

¿From the results in Zhou (1991), note that the LR statistic may be obtained
analytically as

LR = −T ln(λ)

where λ is the smallest root of the determinantal equation

|X ′Ỹ (Ỹ ′Ỹ )−1Ỹ ′X − λX ′X| = 0,

and Ỹ = Y − ι′p ⊗ R̃M .
Our results are summarized in tables 2.1 and 2.2. The latter excludes January

returns and October 1987. As is usual in this literature, we estimate and test the
model over 5-years sub-samples. We report: the p-values of the modified multi-
normality tests SK and KU (see section 4) , LR and its asymptotic χ2(p−1) p-value,
the Gaussian based and the largest student-t based bounds MC p-value associated
with LR (respectively, pN and QU ), the confidence set for κ (C(y)), and its subset
which maximizes the bounds p-values (denoted CU (y)). Figures 1-14 illustrate how
the bounds p-value varies overall C(y). Several points are worth noting:

• Normality is rejected in many sample subsets

• Asymptotic p-values are spuriously significant quite often (e.g. 1941-55).

• The maximal p-values exceed the Gaussian-based p-value. It is relatively
”easier” to reject the efficiency hypothesis under normality. Conversely, re-
call that the Gaussian model obtains with κ → ∞. So if pN exceeds the
significance level, then the largest p-value, a fortiori, also exceeds the signifi-
cance level. Then the decision implied by a non-significant Gaussian p-value
is exactly conclusive (i.e. there is no need to re-consider t-based p-values if
pN fails to reject).

• Although C(y) is quite wide, it is evident from Figures 1-14 that restricting
this set further does not change the tests decision importantly. Specifically,
the p-values do not seems to fluctuate a lot throughout C(y), at least in this
application.

• In spite of the 2-step decision rule and the conservative pre-test which served
to obtain C(y), we still observe rejections in some sub-samples.

6 Conclusion

We have shown that in Gaussian or non-Gaussian contexts, the exact test pro-
cedure proposed by Dufour and Khalaf (1998) may be used to perform portfolio
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efficiency tests. Two earlier (bounds) efficiency tests were also shown to be a spe-
cial case of the latter procedure, which also provided a proof of their equivalence.
We have specifically illustrated how to deal exactly with student-t errors.

To conclude, it is worth emphasizing that the procedure proposed in by Dufour
and Khalaf (1998) is not restricted to efficiency tests. In published empirical mul-
tivariate regressions based studies, interest has typically centered on asymptotic
Wald-type tests. In view of the well known problems associated with such tests, re-
liance on asymptotics is not surprising in the absence of (applicable) exact results.
The bound discussed in this paper provide a very useful approach to conducting
exact tests in multivariate asset pricing models.
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Table 1: Portfolio definitions
Portfolio number Industry Name Two-digit SIC codes

1 Petroleum 13, 29
2 Finance and real estate 60-69
3 Consumer durables 25, 30, 36, 37, 50, 55, 57
4 Basic industries 10, 12, 14, 24, 26, 28, 33
5 Food and tobacco 1, 20, 21, 54
6 Construction 15-17, 32, 52
7 Capital goods 34, 35, 38
8 Transportation 40-42, 44, 45, 47
9 Utilities 46, 48, 49
10 Textile and trade 22, 23, 31, 51, 53, 56, 59
11 Services 72, 73, 75, 80, 82, 89
12 Leisure 27, 58, 70, 78, 79

This table presents portfolios according to their number and sector as well as the SIC
codes included in each portfolio using the same classification as ?.
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Table 2.1 Efficiency tests including January returns5

Normality Efficiency
(1) (2) (3) (4) (5) (6) (7) (8)

Sample SK KU LR p∞ pN QU C(y) CU (y)
1/31/27-12/31/30 .001 .001 11.696 .2309 .415 .427 2-20 11,15,16
1/31/31-12/31/35 .001 .001 6.441 .6951 .858 .863 2-8 8
1/31/36-12/31/40 .001 .001 7.318 .6041 .773 .779 3-18 9,12
1/31/41-12/31/45 .001 .001 17.054 .0478 .133 .133 2-14 3
1/31/46-12/30/50 .001 .001 20.546 .0148 .060 .068 3-16 11
1/31/51-12/30/55 .002 .002 15.476 .0787 .189 .196 ≥ 3 9
1/31/56-12/30/60 .127 .240 21.700 .0099 .046 .047 ≥ 3 10
1/31/61-12/31/65 .762 .484 24.060 .0042 .014 .023 ≥ 3 3
1/31/66-12/31/70 .112 .012 13.836 .1283 .301 .311 ≥ 3 27
1/29/71-12/31/75 .001 .001 8.043 .5298 .713 .719 3-29 20
1/30/76-12/31/80 .001 .001 23.653 .0049 .021 .032 2-16 4
1/30/81-12/31/85 .003 .003 12.820 .1709 .368 .381 ≥ 3 21
1/31/86-12/31/90 .041 .019 28.933 .0007 .003 .020 ≥ 3 3
1/31/91-12/29/95 .302 .103 4.850 .8472 .932 .939 ≥ 3 22

Table 2.2 Efficiency tests excluding January returns (and October 1997)
Normality Efficiency Tests
(1) (2) (3) (4) (5) (6) (7) (8)

Sample SK KU LR p∞ pN QU C(y) CU (y)
1/31/27-12/31/30 .001 .001 10.357 .3224 .558 .561 2-21 11,18
1/31/31-12/31/35 .001 .001 6.865 .6512 .798 .796 2-8 7
1/31/36-12/31/40 .001 .001 11.355 .2522 .465 .477 3-20 15
1/31/41-12/31/45 .001 .002 16.858 .0510 .123 .131 3-30 23
1/31/46-12/30/50 .001 .001 26.842 .0015 .009 .014 2-25 18
1/31/51-12/30/55 .003 .004 15.790 .0714 .187 .203 3-40 21
1/31/56-12/30/60 .273 .502 26.148 .0019 .006 .011 ≥ 3 16
1/31/61-12/31/65 .975 .357 25.579 .0016 .004 .011 ≥ 3 4,8
1/31/66-12/31/70 .520 .100 11.081 .2702 .471 .481 ≥ 3 31,43
1/29/71-12/31/75 .001 .003 13.591 .1376 .293 .308 3-21 5
1/30/76-12/31/80 .001 .001 20.683 .0141 .081 .088 2-19 2
1/30/81-12/31/85 .003 .005 14.165 .1166 .263 .279 ≥ 3 34
1/31/86-12/31/90 .033 .021 32.855 .0001 .001 .004 ≥ 3 3
1/31/91-12/29/95 .410 .316 5.324 .8052 .927 .931 ≥ 4 15

5Numbers in (1)-(2), (4)-(6) are p-values pertaining to: the modified multi-normality tests
[(1)-(2)], LR’s χ2, the Gaussian and the largest student-t based bounds MC p-value [(4)-(6)]. (3)
presents LR, (7)-(8) present the degrees-of-freedom confidence set, and its subset which maximizes
the bounds p-values.
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