Risk-Neutral Valuation in Practice: Implementing a Hedging Strategy for Segregated Fund Guarantees

> Martin le Roux December 8, 2000 martin_le_roux@sunlife.com

Hedging: Pros and Cons

• Pros:

- Protection against catastrophic risk
- Less volatile earnings
- Potentially lower capital requirements, depending on OSFI approval
- Cons:
 - Lower expected income
 - Complexity and operational risks
 - Unlikely to be fully effective

Reserving and Capital Requirements

- GAAP liabilities ("actuarial reserves")
 - Subject to guidelines established by Canadian Institute of Actuaries (CIA)
 - Explicit modelling of assets and liabilities
 - Includes implicit solvency margin
- Minimum Continuing Capital & Surplus Requirement (MCCSR)
 - Formula established by OSFI

Reserving and Capital Requirements

- CIA task force report (August '00)
 - Actuarial reserves and MCCSR to be based on stochastic modelling
 - Analogous to long-dated VaR model
 - "Conditional tail expectation" (CTE x% is average of worst 100-x% of scenarios)
 - Actuarial reserves: CTE 70% to CTE 80%
 - MCCSR: Table of factors approximating CTE 95% (OSFI decision)

CTE versus Quantile Measure Unhedged Reserves per \$100 Guarantee

Unhedged Reserve versus Put Option Per \$100 Guarantee

Modelling Framework

- Hedging model
 - Based on risk-neutral valuation
 - Main purpose is to determine hedge ratios
 - Use deterministic approaches for risks that can't be hedged
- Reserving model
 - Model of real-world loss distribution, allowing for (imperfect) hedging strategy

Sun Life's Hedging Model

- Speed and simplicity are key objectives
 One-factor lognormal model
 If guarantee applies to group of funds then aggregate balance assumed to be lognormal
- Standard trinomial tree approach
- Valuation is net of future fee income
- Mortality: deterministic function of policyholder's age

Sun Life's Hedging Model: Policyholder Behaviour

- Deterministic withdrawal rate
- Anti-selective lapses
 - Type of American option, exercised if $f_t < 0$
 - Optimal behaviour: replace *f*_t by 0
 - Sub-optimal behaviour: replace f_t by $f_t e^{-k\Delta t}$
- Discretionary resets
 - Equivalent to penalty-free lapse and re-entry
 - If replacement contract is fairly priced ($f_t = 0$) then can model as anti-selective lapse

Hedging Instruments

 Stock index futures and options Single stock options • Single stock futures soon to be available • Interest rate swaps or futures • 50 b.p. move in 10-year interest rate has same effect as 10% stock market move Currency futures and options CAD value of foreign funds may decline but local currency value may be unchanged

Long-Term Implied Volatility Risk

- Strategy is to use short-dated options to hedge gamma exposure
 - Protects against unexpected volatility during option term
 - Positions will have to be renewed at uncertain future implied volatility
- Model requires subjective estimate of long-term implied volatility

Implied Volatility CBOE VIX Index, Jan 1986 to Oct 2000

Basis Risk

- Underlying funds are actively managed
 - No futures or options available
 - Fund composition generally unknown and changes over time
- Use linear regression of fund returns against basket of indices and single stocks
 - Combination of TSE60, Nortel and T-bills works well for many Canadian equity funds
 - Use exponentially-weighted moving average

Policyholder Behaviour Risk

- Model makes assumptions about withdrawals, lapses, resets, fund switches
- Behaviour is rarely 100% optimal and may change over time
- Little if any useful data
- Unexpected behaviour can't be hedged

Interest Rate Risk

 Model uses deterministic interest rate assumptions

• Based on current forward yield curve

Treat as a source of outside model risk

Duration-match using swaps or futures

Reserving Model

- Reserves = liabilities per hedging model
 + provision for adverse deviations
- Sources of adverse deviations:
 - Differences between target hedge ratios and actual hedge positions
 - Investment-related risks that can't be hedged (basis risk, long-term implied volatility risk)
 - Unexpected policyholder behaviour and mortality

Reserving Model

- Investment-related risks: Model stochastically and reserve at CTE 80%
 - In principle, should model hedge portfolio over entire lifetime of contract
 - Impractical for non-static hedge portfolio
 - Model static portfolio for a short holding period (1 to 3 months) and apply multiplier
- Other risks: Model deterministically based on conservative assumptions