A stochastic integer programming approach to the optimal thermal and wind generator scheduling problem

> Presented by Michael Chen York University

Industrial Optimization Seminar Fields Institute for Research in Mathematical Science

March 6th, 2012

Outline

Overview

Problem statement

Stochastic programming model

Outline

Overview

Problem statement

Stochastic programming model

Computational challenge and solution

ONTARIO P

Outline

Overview

Problem statement

Stochastic programming model

Computational challenge and solution

Benchmarking report

Wind as a clean and renewable energy source

Can you balance?

demand = *generation*?

Can you balance?

demand = generation? stochastic demand = generation?

Can you balance?

demand = generation? stochastic demand = generation? stochastic demand = stochastic generation?

Increasing wind and increasing system volatility

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction + Operational Flexibility = Success!

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction + Operational Flexibility = Success!

we need more accurate forecasting

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction + Operational Flexibility = Success!

we need more accurate forecasting;

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction + Operational Flexibility = Success!

we need more accurate forecasting; we need operational flexibility more than reserve can provide:

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction + Operational Flexibility = Success!

we need more accurate forecasting; we need operational flexibility more than reserve can provide;

Prediction is very difficult, especially about the future. – Niels Bohr

Prediction + Operational Flexibility = Success!

we need more accurate forecasting; we need operational flexibility more than reserve can provide; we need operational flexibility less expensive than reserve.

1. rigorous mathematical framework;

1. rigorous mathematical framework;

2. simutaneously considers many scenarios;

- rigorous mathematical framework;
- 2. simutaneously considers many scenarios;
- generates an optimal proactive baseline schedule; and a set of reactive adjustments;

- rigorous mathematical framework;
- 2. simutaneously considers many scenarios;
- generates an optimal proactive baseline schedule; and a set of reactive adjustments;

4. guranteed optimality;

- rigorous mathematical framework;
- 2. simutaneously considers many scenarios;
- generates an optimal proactive baseline schedule; and a set of reactive adjustments;

- 4. guranteed optimality;
- 5. proven confidence interval;

- rigorous mathematical framework;
- 2. simutaneously considers many scenarios;
- generates an optimal proactive baseline schedule; and a set of reactive adjustments;

- 4. guranteed optimality;
- 5. proven confidence interval;
- 6. more robust and secure grid;

rigorous mathematical framework;

- 2. simutaneously considers many scenarios;
- generates an optimal proactive baseline schedule; and a set of reactive adjustments;

- 4. guranteed optimality;
- 5. proven confidence interval;
- 6. more robust and secure grid;
- 7. more integrated wind;

rigorous mathematical framework;

- 2. simutaneously considers many scenarios;
- generates an optimal proactive baseline schedule; and a set of reactive adjustments;

- 4. guranteed optimality;
- 5. proven confidence interval;
- 6. more robust and secure grid;
- 7. more integrated wind;
- 8. lower energy cost for the society

v_{ih} : on/off status of slow generator *i* at each time $h, \forall i \in J_s$;

 v_{ih} : on/off status of slow generator *i* at each time – *h*, $\forall i \in J_s$;

 v_{ih}^s : on/off status of fast generator *i* at each time *h* in scenario *s*, $\forall i \in J_f$, $s \in S$;

- v_{ih} : on/off status of slow generator *i* at each time *h*, $\forall i \in J_s$;
- v_{ih}^s : on/off status of fast generator *i* at each time *h* in scenario *s*, $\forall i \in J_f$, $s \in S$;

 v_{ih} : on/off status of slow generator *i* at each time $h, \forall i \in J_s$;

 v_{ih}^s : on/off status of fast generator *i* at each time *h* in scenario *s*, $\forall i \in J_f$, $s \in S$;

All other variables are dependent on the variable v.

Stochastic programming model: unit commitment constraints

The unit commitment constraints for a generator $j \in J$ is defined as:

	$(y_{jh} \ge v_{jh} - v_{j,h-1})$	$\forall h \in H$	(6a)
$\mathfrak{U}_j := \left\{ \right.$	$z_{jh} \geqslant v_{j,h-1} - v_{jh}$	$\forall h \in H$	(6b)
	$y_{j,h-\overline{T}_{j+1}} + \cdots + y_{jh} \leqslant v_{jh}$	$\forall h \in H$	(6c)
	$z_{j,h-\underline{T}_j+1}+\cdots+z_{jh}\leqslant 1-v_{jh}$	$\forall h \in H$	(6d)
	$v_{j,h-1} - v_{jh} + y_{jh} - z_{jh} = 0$	$\forall h \in H$	(6e)
	$v_{jh} \in \{0, 1\}, y_{jh}, z_{jh} \in [0, 1]$	$\forall h \in H$	(6f)

The constraint sets \mathcal{U}_{J} , \mathcal{U}_{J_s} , \mathcal{U}_{J_f} are defined accordingly:

$$\mathfrak{U}_{J} := \bigcap_{j \in J} \mathfrak{U}_{j}, \mathfrak{U}_{J_{s}} := \bigcap_{j \in J_{s}} \mathfrak{U}_{j}, \mathfrak{U}_{J_{f}} := \bigcap_{j \in J_{f}} \mathfrak{U}_{j}$$
(7)

Stochastic programming model: reserve constraints

$$\mathcal{R}^{s} := \begin{cases} \sum_{j \in J} rs_{jh}^{s} \ge \eta_{s} \sum_{l \in L} d_{lh}^{s} & \forall h \in H \quad (8a) \\ \sum_{j \in J} rs_{jh}^{s} + \sum_{j \in J} ro_{jh}^{s} \ge \eta \sum_{l \in L} d_{lh}^{s} & \forall h \in H \quad (8b) \end{cases}$$

Stochastic programming model: reserve constraints

$$\mathcal{R}^{s} := \begin{cases} \sum_{j \in J} rs_{jh}^{s} \ge \eta_{s} \sum_{l \in L} d_{lh}^{s} & \forall h \in H \qquad (8a) \\ \sum_{j \in J} rs_{jh}^{s} + \sum_{j \in J} ro_{jh}^{s} \ge \eta \sum_{l \in L} d_{lh}^{s} & \forall h \in H \qquad (8b) \end{cases}$$

We assume the contingency constraint is implemented exogenously following NERC N-1 rule.

Stochastic programming model: network constraints

$$\mathcal{N}^{s} := \begin{cases} \sum_{j \in J_{m}} p_{jh}^{s} + \sum_{i \in J_{m}} w_{ih}^{s} + \sum_{nm \in E} f_{nmh}^{s} = \\ \sum_{mn \in E} f_{mnh}^{s} + \sum_{k \in L_{m}} d_{lh}^{s} + gsh_{m} & \forall m \in V, h \in H \quad (9a) \\ f_{mnh}^{s} = b_{mn}(\theta_{mh}^{s} - \theta_{nh}^{s} - \gamma_{mnh}^{s}) & \forall mn \in E, h \in H \quad (9b) \\ -\overline{f}_{mn} \leqslant f_{mnh}^{s} \leqslant \overline{f}_{mn} & \forall mn \in E, h \in H \quad (9c) \\ \gamma_{mn} \leqslant \gamma_{mnh}^{s} \leqslant \overline{\gamma}_{mn} & \forall mn \in E, h \in H \quad (9d) \\ \theta_{ref,h}^{s} = 0 & \forall h \in H \quad (9e) \end{cases}$$

Stochastic programming model: capacity constraints

$$\mathbb{C}^{s} := \begin{cases} \frac{P_{j}v_{jh} \leqslant p_{jh}^{s}}{p_{jh}^{s} + rs_{jh}^{s} \leqslant \overline{P}_{j}v_{jh}} & \forall j \in J, h \in H \ (10a) \\ p_{jh}^{s} + rs_{jh}^{s} \leqslant \overline{P}_{j}v_{jh} & \forall j \in J, h \in H \ (10b) \\ p_{jh}^{s} + rs_{jh}^{s} + ro_{jh}^{s} \leqslant \overline{P}_{j} & \forall j \in J, h \in H \ (10c) \\ p_{jh}^{s} - p_{j,h-1}^{s} + rs_{jh}^{s} + ro_{jh}^{s} \leqslant \overline{R}_{j} & \forall j \in J, h \in H \ (10e) \\ rs_{jh}^{s} \leqslant \overline{RS}_{j} & \forall j \in J, h \in H \ (10f) \\ ro_{jh}^{s} \leqslant \overline{RO}_{j} & \forall j \in J, h \in H \ (10g) \\ w_{lh}^{s} \leqslant \widetilde{w}_{lh}^{s} & \forall l \in L, h \in H \ (10h) \end{cases}$$

 for stochastic linear programming problem, L-shape method is efficient and popular;

- for stochastic linear programming problem, L-shape method is efficient and popular;
- stochastic integer programming problem is much more challenging!

- for stochastic linear programming problem, L-shape method is efficient and popular;
- stochastic integer programming problem is much more challenging!
- both the first stage and the second stage of the stochastic unit commitment model are integer problem!

- for stochastic linear programming problem, L-shape method is efficient and popular;
- stochastic integer programming problem is much more challenging!
- both the first stage and the second stage of the stochastic unit commitment model are integer problem!
- cutting-plane method is very effective for integer problem;

- for stochastic linear programming problem, L-shape method is efficient and popular;
- stochastic integer programming problem is much more challenging!
- both the first stage and the second stage of the stochastic unit commitment model are integer problem!
- cutting-plane method is very effective for integer problem;
- how about stochastic integer problem?

Our-solution: scenario crossing deep cuts

Definition $C_{sh} \subset J$ is a (s, h)-cover if

$$\sum_{j\in C_{sh}}\overline{P}_j+\sum_{i\in I}\widetilde{w}_{ih}^s<(1+\eta_s)\sum_{l\in L}d_{lh}^s.$$

If in addition

$$\sum_{j \in C_{sh}} \overline{P}_j + \sum_{i \in I} \tilde{w}^s_{ih} + \underline{P}_i \ge (1 + \eta_s) \sum_{l \in L} d^s_{ld} \quad \forall i \in J - C_{sh},$$
(11)

then the cover C is simple.

Our solution: scenario crossing deep cuts

PROPOSITION If $(1 + \eta_s) \sum_{l \in L} d_{lh_1}^{s_1} - \sum_{i \in I} \tilde{w}_{ih_1}^{s_1} \leq (1 + \eta_s) \sum_{l \in L} d_{lh_2}^{s_2} - \sum_{i \in I} \tilde{w}_{ih_2}^{s_2}$, then (i) a (s_1, h_1) -cover is also a (s_2, h_2) -cover; (ii) any (s_2, h_2) -cover has a (s_1, h_1) -cover subset.

Our solution: scenario crossing deep cuts

PROPOSITION

Let *C* be a (s, h)-cover and $\Delta_h^s = \sum_{l \in L} d_{lh}^s - \sum_{j \in C} \overline{P}_j - \sum_{i \in I} \tilde{w}_{ih}^s$. Then the strengthened (s, h)-cut

$$\sum_{j\in J-C} \frac{P_{jh}^s}{max\{\underline{P}_j, \Delta_h^s\}} + \sum_{i\in I} \frac{w_{ih}^s}{\Delta_h^s} \ge 1$$
(12)

is valid for $\rho^{s}(\cdot)$. If in addition,

$$\Delta_h^s \leqslant \overline{P}_j$$
, $orall j \in J-C$,

and (11) holds strictly for some indices, then (12) is facet-defining for $\rho^{s}(\cdot)$.

Our solution: scenario crossing deep cuts

Definition

Two generators a and b are symmetric if a and b have identical physical features and are located on one bus.

PROPOSITION

Assume there are κ symmetric pairs in the electricity grid. Let Ω^s be the feasible set of $(\mathbf{v}^s, \mathbf{y}^s, \mathbf{z}^s)$ in $\rho^s(\lambda^s)$, and Ω^{sr} be the reduced feasible set after applying the κ symmetry cuts:

 $y_{ah}^{s} + v_{a,h-1}^{s} + v_{b,h-1}^{s} \ge y_{bh}^{s}$, for all symmetric pairs (a,b),

then

$$|\Omega^{s\prime}| = \frac{|\Omega^{s}|}{2^{\kappa}},$$

i.e., the feasible region shrinks exponentially.

Numerical test: RTS-96 system

Table: Generator Mix

Туре	Technology	No. units	Capacity(MW)	list of units	
U12	Oil/Steam	5	60	16-20	
U20	Oil/CT	4	80	1-2,5-6	
U50	Hydro	6	300	25-30	
U76	Coal/Steam	4	304	3-4, 7-8	
U100	Oil/Steam	3	300	9-11	
U155	Coal/Steam	4	620	21-22, 31-32	
U197	Oil/Steam	3	591	12-14	
U350	Coal/3 Steam	1	350	33	
U400	Nuclear	2	800	23-24	
W150	Wind	1	150		
W100	Wind	1	100	-	

Numerical test: RTS-96 system

Table: Bus Generator Incidence

Bus	Generators	Bus	Generator	Bus	Generator
1	1-4	7	9-11	18	23
2	5-8	13	12-14	21	24
4	W150	15	16-21	22	25-30
5	W100	16	22	23	31-33

Effect of symmetry cut

C	Optimal sche	edule 1	Optimal schedule 2			
Gen	switch on	switch off	Gen	switch on	switch off	
7	6	23	8	6	23	
3	7	23	3	7	23	
4	7	23	4	7	23	
8	7	23 7		7	23	
13	7	21	13	7	21	
12	8	22	12	8	22	
14	8	22	14	8	22	
17	8	12	16	8	12	
20	8	12	18	8	12	
2	10	11	1	10	11	

Table: Optimal Schedule for Two-scenario Instance. Generators not shown in the table are always on. No wind curtailment nor demand shedding appears in this optimal schedule. The optimal objective value is \$798,256. Total demands for the two scenarios over the 24 hrs are 56811.5MW and 56571.8MW.

Benchmarking report

	CPLEX B&B		CPLEX D& S		Cover Cuts			Both cuts	
S	nodes	seconds	nodes	seconds	nodes	seconds	Ncuts	node	second
2	3027	78	3453	75	2460	53	2	48	37
5	1051	73	2544	224	185	17	10	25	10
10	3715	703	3137	870	1741	529	12	117	101
15	37040	5053	44838	21500	1631	1064	23	1103	1176
20	5279	5023	8684	4096	3592	3359	29	237	282
25	7281	4191	23533	18998	1667	2920	42	621	1305

Table: Statistics of running time. The number of cuts shown in table is for cover cuts; the number of symmetry cuts is constantly 36, which is not shown in the table.

S	2	5	10	15	20	25	mean	median
cover cut	29%	76%	24%	78%	17%	30%	42%	29%
both cuts	50%	86%	85%	76%	93%	68%	76%	80%

Table: Reduction rate of running time

Canada could benefit from the abundant wind resource; if

Canada could benefit from the abundant wind resource; if

the system volatility could be safely controlled.

- Canada could benefit from the abundant wind resource; if
- the system volatility could be safely controlled.
- along with prediction, operational flexibility is an extremely important mechanism;

- Canada could benefit from the abundant wind resource; if
- the system volatility could be safely controlled.
- along with prediction, operational flexibility is an extremely important mechanism;
- Stochastic integer programming approach can greatly enhance the operational flexibility; however.

- Canada could benefit from the abundant wind resource; if
- the system volatility could be safely controlled.
- along with prediction, operational flexibility is an extremely important mechanism;
- Stochastic integer programming approach can greatly enhance the operational flexibility; however,

computational efficiency is its bottleneck.

- Canada could benefit from the abundant wind resource; if
- the system volatility could be safely controlled.
- along with prediction, operational flexibility is an extremely important mechanism;
- Stochastic integer programming approach can greatly enhance the operational flexibility; however,
 - computational efficiency is its bottleneck.

model for the problem

We build a mathematically rigorous stochastic optimization

- Canada could benefit from the abundant wind resource; if
- the system volatility could be safely controlled.
- along with prediction, operational flexibility is an extremely important mechanism;
- Stochastic integer programming approach can greatly enhance the operational flexibility; however,
 - computational efficiency is its bottleneck.
 - We build a mathematically rigorous stochastic optimization model for the problem.
- Our research on cross-scenario deep cuts speeds up the state-of-art-GPLEX-solver significantly!

can stochastic programming approach safely reduce system reserve?

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?

an energy producer?

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?
- how to evaluate the efficiency, reliability and profitability of

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?
- how to evaluate the efficiency, reliability and profitability of an energy producer?

are there benefit for optimally switching transmission line?

systen

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?
- how to evaluate the efficiency, reliability and profitability of an energy producer?
 - are there benefit for optimally switching transmission line?

system

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?
- how to evaluate the efficiency, reliability and profitability of an energy producer?
 - are there benefit for optimally switching transmission line?

how much gain a battery array can bring to a grid system?

system?

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?
- how to evaluate the efficiency, reliability and profitability of an energy producer?
 - are there benefit for optimally switching transmission line?
 - how much gain a new transmission line can bring to a grid
- how much gain a battery array can bring to a grid system?
 how to integrate wind forecasting and unit commitment?

- can stochastic programming approach safely reduce system reserve?
- how to model peaks in a 5-minutes interval efficiently?
- what is an optimal generator mix for future market?
- considering an ISO DACP algorithm, how to make best bids?
- how to evaluate the efficiency, reliability and profitability of an energy producer?
 are there benefit for optimally switching transmission line?
 how much gain a new transmission line can bring to a grid system?
 how much gain a battery array can bring to a grid system?
 - how to integrate wind forecasting and unit commutment?
 - how to integrate demand management and production
Paper and slides are available upon request, please contact:

Paper and slides are available upon request, please contact:

Assistant Professor Michael Chen Mathematics and Statistics Department York University, Toronto 416-736-2100 ext. 22591 chensy@mathstat.yorku.ca http://people.math.yorku.ca/chensy