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How Does Illiquidity Affect Delegated
Portfolio Choice?

Abstract

In a continuous-time dynamic portfolio choice framework, I study the problem of an
investor who exogenously decides to delegate the administration of her savings to a
risk-averse money manager who trades multiple risky assets in a thin market. I con-
sider a manager who is rewarded for increasing the value of assets under management,
which is the product of both the manager’s portfolio allocation decisions, taken over
the investment period, and the money flows into and out of the fund, as a result of
the portfolio performance relative to an exogenous benchmark. The model proposed
here shows that, whenever the manager can substitute between more illiquid and less
illiquid risky assets, she is likely to choose to hold an initial portfolio that is skewed
toward more illiquid assets, and to gradually shift toward less illiquid assets over the
investment period. The model further shows that several misalignments of objectives
between the investor and the manager can lead to large utility costs on the part of the
investor, and that these costs decrease with asset illiquidity. Solving for the shadow
costs of illiquidity, the model indicates that delegated rather than direct investing is
likely to lead to larger price discounts.
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1 Introduction

In this paper, I investigate how the inability to buy and sell assets as desired, affects

the problem of an investor who decides not to invest her savings directly, but instead

decides to hire a money manager to do so on a discretionary basis.

As was recognized by Allen (2001), asset pricing theory cannot be indifferent to the

fact that portfolio delegation or institutional ownership have become increasingly dom-

inant features of developed financial markets. Indeed, even though direct accessibility

to financial markets has been improving over the years, the tendency for individual

investors to delegate the administration of their savings to professional money man-

agers has not slowed down. According to data from the Federal Reserve Board, back

in 1952, individual investors directly held over 90% of corporate equities, while by the

end of 2008 this proportion was down to less than 25%. At the same time, the fraction

of equities held by investment funds (including mutual funds, closed-end funds, and

exchange-traded funds) rose from 2.9% to 28.5%. By hiring money managers to ad-

minister theirs savings, investors lose control over the composition of funds’ portfolios

and become subject to numerous misalignments of objectives that can be very costly.

For instance, according to a survey by the Investment Company Institute (the national

association of U.S. investment companies), by the end of 2007 over 90% of U.S. mutual

fund-owning households indicated “saving-for-retirement” as their primary financial

goal. However, fund managers, who are concerned with their reputations and careers,

and who may derive private benefits from being in charge of large funds, have incentives

to boost short-term performance to increase the value of their funds’ assets, actions

that may be inconsistent with investors’ risk tolerance and long-run investment goals.1

It is therefore important to understand what factors affect delegated portfolio choice,

and how they do so.

To the best of my knowledge, existing models of delegated portfolio choice have

assumed that investors and fund managers can trade assets continuously and with no
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frictions. Increasingly, however, both academics and practitioners recognize that, in

addition to risk and return, liquidity (or the lack of it) is a critical component of the

investment equation. In reality, when liquidity dries up, investors and money managers

lose control over their portfolio allocations and may be forced to sit on their hands for

long periods of time, unable to trade out of mistakes they may have made with less

liquid assets. What’s more, investing in illiquid assets presents an interesting set of

challenges and risks. In particular, their true value is often unknown, their historical

performance can often be misleading, and they typically cost more to transact. In

addition, as if low liquidity wasn’t already difficult enough to deal with, volatility also

typically increases in down and more illiquid markets. In the face of such uncertainty,

investors and money managers’ optimal portfolio policies necessarily diverge from those

they would choose in a less constrained context. Recall that the performance of mutual

fund managers is usually measured relative to the performance of a benchmark, like

the Wilshire 5000 or the S&P 500, which are usually simply paper-based calculations of

stock prices as they are quoted on the exchange. However, as fund managers attempt to

make a transaction, prices of illiquid assets can differ significantly from those quoted on

the exchange. The flows into and out of the managers’ funds depend on the performance

of their portfolios relative to these benchmarks, and the presence of illiquidity makes

it more difficult for managers to track benchmarks and grow the value of their funds’

assets. Given that illiquidity can result in a failure to transact, money managers’

performance, not to mention their jobs, can be put at stake, and so the presence of

illiquidity can ultimately affect managers’ preferences and incentives.

In this paper, I relax the assumption of continuous and frictionless asset trading

that has underlied existing models of delegated portfolio management to date and,

using a familiar partial-equilibrium dynamic portfolio choice framework, I study the

problem of an individual investor who exogenously delegates the administration of her

savings to a fund manager who trades multiple risky assets in a market where prices are

abnormally volatile and assets have limited marketability. I consider that the exogenous
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portfolio delegation decision is grounded on the assumption that, in comparison with

the individual investor, the money manager is subject to lower transaction costs, lower

opportunity costs for engaging in active portfolio management, better information or

ability, or better investing education. In addition, I consider a risk-averse manager

whose compensation scheme is set exogenously and which is proportional to the value

of her fund’s assets under management at some terminal date. This fund’s terminal

value is the product of both the manager’s portfolio allocation decisions, taken over

the investment period, and the money flows into and out of the fund which are allowed

to happen only once on the investment horizon and which depend on the manager’s

portfolio performance relative to a reference benchmark.

I model illiquidity according to Longstaff (2001), in which market participants are

constrained to trading strategies that are of bounded variation, and investigate the

extent to which the restricted ability to initiate or unwind portfolio positions affects

the fund manager’s optimal asset allocations and risk-shifting incentives created by

benchmarking, and how that affects the welfare costs generated to a delegating in-

vestor whose objectives may diverge from those of the fund manager. I study this

problem in a Black-Scholes-Merton economy in which market participants have access

to one riskless asset and two risky assets whose returns can be correlated. I consider

liquidity restrictions to be asset-specific. Both of the risky assets can be traded at the

beginning of the investment period, but one of them cannot be traded again until after

a “blackout” period, while the other is allowed to be traded, even if just in limited

amounts, over the investment period. Market participants therefore have limited abil-

ity to rebalance their portfolio positions at any price, a characteristic that resembles

the concept of depth in financial markets. Examples of risky assets subject to these

sorts of trading restrictions are stock of firms that are not publicly traded, restricted

and unregistered stock in publicly traded companies, or a large holding of a particular

stock that the market cannot absorb.

My analysis shows that, compared to when there are no liquidity constraints, when-
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ever a fund manager can choose between two risky assets that are identical in all respects

except in terms of liquidity, she is likely to hedge her portfolio by lowering her total

initial risk exposure, moving capital away from riskier investments and towards the

safest one. This analysis confirms that in the framework of Longstaff (2001) market

illiquidity endogenously generates funding illiquidity.2 In other words, because the fund

manager’s value of assets under management is a process bounded below by zero, and

given that under liquidity constraints, returns of each risky asset cannot be replicated

by those of the remaining assets in the portfolio, endogenously the manager cannot

borrow to invest more in risky assets, because the prices of the illiquid risky assets can

quickly fall, making it impossible to sell enough of those assets to guarantee positive

terminal wealth. In addition, due to diversification reasons, and to incentives for the

hedging of portfolio weight uncertainty, initial portfolio allocations on the two risky

assets appear to be generally tilted towards the more illiquid risky asset, and are likely

to subsequently shift toward the less illiquid risky asset over the investment period.3

According to the model, portfolio weights in the less illiquid risky asset are also likely

to tilt away from those in the benchmark portfolio significantly more than are portfolio

weights of the more illiquid risky asset, which suggests that a liquidity-constrained fund

manager, whose portfolio allocations are no longer under her complete control, is likely

to shift portfolio risk by trading on the less illiquid asset. Furthermore, fund managers

have implicit incentives to distort portfolio allocations so as to increase the likelihood of

future fund inflows, and explicit incentives to administer investors’ savings according to

their own attitudes towards risk, their (usually shorter) investment horizons, and their

(eventually more favorable) participation and transaction costs. My analysis indicates

that the misalignment of objectives between the investor and the fund manager can

be very costly, and that these costs appear to decrease with asset illiquidity. Lastly,

after comparing utilities derived under liquidity constraints, with those derived in a

context without such constraints, the model proposed here indicates that the shadow

costs of illiquidity appear to be larger for the delegated portfolio problem, compared
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to the direct investing one.

For ease of exposition, I confine attention to a nominal economy, a constant in-

vestment opportunity set, and a constant relative risk aversion (CRRA, hereafter)

preference structure. I also focus my analysis on the simple fund flow-to-performance

function used in Browne (1999) and Binsbergen, Brandt, and Koijen (2008), where

flows into and out of a fund are unbounded and do not depend on the performance of

the portfolio chosen by the manager, but solely on the performance of the exogenous

benchmark. I recognize that an alternative and more interesting specification for this

flow-to-performance function would exhibit a local convexity and would take the size

of the flows into and out of the fund to depend on the fund’s own performance relative

to the benchmark, like the one studied in Basak, Pavlova, and Shapiro (2007), which is

capped and calibrated according to the empirical estimations of Chevalier and Ellison

(1997). Nevertheless, most of the main results presented in this paper hold using either

of these specifications.

This work is closely related to the strand of research on risk-shifting incentives in

delegated portfolio management, and the implications of benchmarking, represented

on empirical grounds by Chevalier and Ellison (1997), Chevalier and Ellison (1999),

and Sirri and Tufano (1998), and represented on theoretical grounds by Arora and

Ou-Yang (2001), Browne (1999), Basak, Pavlova, and Shapiro (2007), Basak, Pavlova,

and Shapiro (2008), and Basak and Makarov (2008). These studies describe a positive

relationship between past performance relative to a given benchmark or peer group,

and subsequent flows into and out of mutual funds, giving money managers, whose

compensation is directly linked to the value of the assets they manage, an implicit

incentive to distort portfolio allocations in order to increase the likelihood of finishing

ahead of a given performance benchmark with the purpose of increasing future fund

inflows.4 This study is also related to the long literature on asset liquidity and its

implications for asset pricing and portfolio choice, examples of which are Longstaff

(1995), Longstaff (2001), Liu and Loewenstein (2002), Liu (2004), Jang, Koo, Liu, and
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Loewenstein (2007), and Isaenko (2008). Also relevant for this study is the empirical

evidence of mutual funds’ preference for large liquid stocks (Falkenstein (1996)), ev-

idence of liquidity timing by mutual fund managers (Cao, Simin, and Wang (2007)),

evidence that portfolio liquidity is actively managed and chosen as a function of the

multiple liquidity needs of a fund (Massa and Phalippou (2005)), and evidence that

fund managers tilt their holdings more heavily towards liquid stocks when the market

is expected to be more volatile (Huang (2008)).

The objective of the present work is then to integrate these blocks of literature

and to provide a formal analysis of the implications of asset illiquidity in a delegated

portfolio context. The paper is organized as follows. In Section 2, I describe the the-

oretical model setup, which includes the continuous-time economic setting in which

investors and money managers decide their optimal dynamic portfolio policies. The

setup includes the money managers’ unconstrained problem, with and without implicit

incentives, and the constrained problem, with constant and stochastic liquidity con-

straints. In Section 3, I solve the model using numerical methods, and discuss its main

results. Conclusions and implications for further research are presented in Section 4.

2 Model setup

2.1 The financial market

Consider two market participants. Let one be a household investor who exogenously

decides to directly access the financial market and manage her savings by herself or

who, alternatively, decides to hire a money manager to whom she delegates the ad-

ministration of all her savings.5 Assume the money manager’s fund belongs to a peer

group consisting of a large number of competing funds, such that there are no incentives

for strategic interactions among fund managers.6 Moreover, let these market partic-

ipants have constant investment opportunities, and finite investment time horizons,

Ti ∈ [0,∞), for i ∈ {I,M}. Let these participants take asset prices as given.
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Consider a nominal economy in which continuous and unlimited trading and short-

selling are possible whenever liquidity restrictions are left out. In this economy, partic-

ipants can invest in m+ 1 assets, with prices denoted by Sj(t), for j ∈ {0, 1, 2, ...,m}.

The first asset is a non-redundant nominal riskless money market account, which price

dynamics follow the process:
dS0(t)

S0(t)
= rdt (1)

where r ≥ 0 is a constant, continuously compounded interest rate. The remaining m

assets are non-redundant risky assets with nominal prices evolving according to the

following equation:
dS(t)

S(t)
=
(
rι + σ>s Λ

)
dt+ σ>s dZ(t) (2)

where ι is an m× 1 vector of ones, Λ denotes a d× 1 vector of constant prices of risk,

and σs is a d ×m matrix of constant loadings on the source of uncertainty generated

by a d-dimensional standard geometric Brownian motion Z(t).

Let N0(t) denote the number of units of the riskless money market account, and

likewise let N(t) denote the m×1 vector of units of the risky securities held by a market

participant at time t, for 0 ≤ t ≤ T . This market participant’s wealth is therefore given

by W (t) = N0(t)S0(t) +N(t)>S(t), which evolves according to the following equation:

dW (t) = N0(t)rS0(t)dt+N(t)>diag[S(t)]
[(
rι + σ>s Λ

)
dt+ σ>s dZ(t)

]
(3)

where S(t) is an m × 1 vector, and diag[S(t)] puts S(t) on the main diagonal of an

m×m matrix.

Now, take this market participant’s holdings in the m+ 1 assets at each and every

time t, to be self-financing and to be constrained to lie in the closed solvency region of:

S =
{

(S0(t), S(t)) ∈ Rm+1 : N0(t)S0(t) +N(t)>S(t) > 0
}

(4)

for all t, and 0 ≤ t ≤ T .
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Take the fund manager’s compensation to be proportional to the value of the as-

sets under her administration, and to be due at the investment horizon. Consider a

fund manager whose performance is measured relative to the value of a self-designated

benchmark, Y (t).7 Assume this benchmark is a reference portfolio of risky and risk-

less assets which can be replicated by the fund manager. Let the benchmark evolve

according to the process:

dY (t) = Y (t)
[(
r + β(t)>σ>s Λ

)
dt+ β(t)>σ>s dZ(t)

]
(5)

where the m× 1 vector β(t) given by β(t) = Y (t)−1diag[S(t)]M(t), denotes the vector

of weights of the risky assets on the benchmark portfolio such that the weight on

the riskless money market account is given by 1 − ι>β(t). The m × 1 vector M(t)

denotes the number of units of risky assets that make up the benchmark at time

t, for 0 ≤ t ≤ T . I consider both a continuously rebalanced (active) benchmark,

where β(t) is set to be constant, and is determined at time t = 0, and a buy-and-

hold (passive) benchmark portfolio, where M(t) is set to be constant, and where β(t)

becomes rather random. Note that by “self-designated benchmark” I do not mean that

vector β(t) should be included as a control in the manager’s problem from which optimal

performance benchmarks are derived (e.g. Binsbergen, Brandt, and Koijen (2008)).

Note that this work is also not concerned about how the incentive to improve fund

inflows could drive the fund manager to strategically mismatch her fund benchmark,

as empirically illustrated in Sensoy (2008). Instead, here my solo focus is on how a

fund manager allocates and manages resources to achieve investment objectives, given

the manager’s chosen performance benchmark. The benchmark is assumed to satisfy

the manager’s participation constraint.

Note that this paper focuses on the description of the continuous-time optimal

control problem of the fund manager, and only occasionally refers to the investor’s

problem, which is taken as a special case of the manager’s problem. For simplicity of
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notation, subscripts I and M are used to indicate variables or parameters pertaining

to the investor and the fund manager, respectively, only when necessary for clarity of

exposition.

2.2 The fund manager’s liquidity-unconstrained problem

As a point of reference, consider first the problem of a fund manager who is not subject

to liquidity restrictions, and who derives utility from the nominal value of the lump-sum

cumulative amount of assets under management at the end of his or her investment

horizon, t = T . Since admissible allocations requireW (t) > 0, portfolio weights on risky

assets are well defined and are given by the m×1 vector ω(t) = W (t)−1diag[S(t)]N(t),

such that the remainder, 1− ι>ω(t), denotes the portfolio weight on the money market

account at time t, for 0 ≤ t ≤ T . Plugging ω(t) into Equation (3) we get to the following

functional form representing the dynamics of the value of assets under management:

dW (t) = W (t)
[(
r + ω(t)>σ>s Λ

)
dt+ ω(t)>σ>s dZ(t)

]
(6)

Subject to Equation (6), a fund manager guided by CRRA preferences, dynamically

allocates the fund’s assets valued initially at W (0) among a money market account and

m risky assets, by choosing a vector of controls ω(t), so as to solve:

J(W, t) = sup
ω(t)

Et

{
[W (T )φ(T )]1−γ

1− γ

}
(7)

where γ > 0, and γ 6= 1, denotes the manager’s coefficient of relative risk aversion,

and φ(T ) denotes the rate at which funds flow into (φ(T ) > 1) or out (φ(T ) < 1) of

the fund at the terminal date, depending on the fund’s performance relative to a given

benchmark.8 I assume that the fund manager’s investment horizon, T , coincides with

the date of fund flows, and that fund flows are nontradeable at that date.9
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2.2.1 Optimal portfolio policies without benchmarking incentives

Absent benchmarking considerations, in which case φ(t) = 1, and under regularity con-

ditions on the value function, the Hamilton-Jacobi-Bellman Partial Differential Equa-

tion (HJB PDE, hereafter) representing the problem described above, suppressing time

indicators, is given by:

Jt + rWJW + sup
ω

{
WJW

(
ω>σ>s Λ

)
+

1

2
W 2JWW

[
ω>
(
σ>s σs

)
ω
]}

= 0 (8)

with terminal condition J(W,T ) = [1/(1 − γ)]W (T )1−γ . The corresponding optimal

portfolio allocations on risky assets are given by the m× 1 vector:

ω∗(t) =
1

γ

(
σ>s σs

)−1
σ>s Λ (9)

with the remainder, 1 − ι>ω∗(t), invested in the money market account. In this un-

constrained liquidity setting, if Λ < 0m×1, then ω∗(t) < 0, the money manager chooses

to hold a short position in risky assets. Likewise, if Λ = 0m×1, then ω∗(t) = 0, and if

Λ > γ
(
σ>s
)−1 (

σ>s σs
)
ι, then ω∗(t) > 1, and the money manager chooses to hold a lever-

aged position in risky assets. Moreover, this is so in a complete market setting, where

σs is invertible, and where
(
σ>s σs

)−1
= σ−1s

(
σ>s
)−1

= σ−1s
(
σ−1s

)>
is possible. Given

that σs is assumed to be constant, these optimal investment strategies are indepen-

dent of the investment horizon, as shown in Merton (1969). Such myopic allocations

require continuous trading, and clearly N∗(t) = γ−1W (t)diag[S(t)]−1
(
σ>s σs

)−1
σ>s Λ

is of unbounded variation. Hence, after plugging (9) into (6), to solve the resultant

stochastic differential equation, and plugging the solution then into (7), and after lin-

earizing the term involving the Wiener process before placing the expectation operator

in front of it, the utility derived by the fund manager, as a result of implementing these
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unconstrained optimal policies, is given by:

J(W, t) =
W (t)1−γ

1− γ
exp

{[
r +

1

2γ
A1

]
(1− γ)τ

}
(10)

where A1 = Λ>σs
(
σ>s σs

)−1
σ>s Λ, and τ = T − t. This complete solution to the man-

ager’s liquidity-constrained problem coincides with that of the investor whenever any

explicit incentives are left out. The fund manager has explicit incentives to administer

the investor’s savings according to her own attitude towards risk, her (usually shorter)

investment horizon, and her (eventually more favorable) participation and transaction

costs. The implications of these explicit incentives are considered in Section 3.

2.2.2 Optimal portfolio policies with benchmarking incentives

In the presence of benchmarking incentives, a fund manager experiences money flows

into and out of her fund at a rate φ(T ), depending on the manager’s portfolio perfor-

mance, at time T , relative to a benchmark chosen (exogenously) at time t = 0. For

ease of exposition, in this paper I focus the analysis on the results from a fund flow-to-

performance function that is in line with Browne (1999), and Binsbergen, Brandt, and

Koijen (2008), and according to which fund flows do not depend on the manager’s own

portfolio performance, but solely on the absolute performance of an exogenous bench-

mark. In this case, the flow-performance function is given by φ(T ) = 1/Y (T ), for a

Y (t) that evolves according to Equation (5). The convenience of this configuration is

that it allows the derivation of a closed form solution for the optimal portfolio policies,

whenever trading restrictions are left out, which helps with the intuition of the results I

present in Section 3.2. If we let X(T ) = W (T )φ(T ), and we apply Ito’s rule, we arrive

at the dynamics of X(t), for φ(t) = 1/Y (t), as follows:

dX(t) = X(t)[ω(t)− β(t)]>
[(
σ>s Λ−

(
σ>s σs

)
β(t)

)
dt+ σ>s dZ(t)

]
(11)
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and, under regularity conditions on the value function, suppressing time indicators, and

given a continuously rebalanced benchmark, the HJB PDE for this problem is given

by:

sup
ω

{
XJX

(
ω>A2

)
+

1

2
X2JXX

[
ω>
(
σ>s σs

)
(ω − 2β)

]}
−

−XJX
(
β>A2

)
+

1

2
X2JXX

[
β>
(
σ>s σs

)
β
]

+ Jt = 0

(12)

whereA2 = σ>s Λ−
(
σ>s σs

)
β, and with terminal condition J(X,T ) = [1/(1−γ)]X(T )1−γ .

Hence, when the performance of the fund manager is measured relative to an exogenous

benchmark, the manager’s optimal portfolio is given by:

ω#(t) =
1

γ

(
σ>s σs

)−1
σ>s Λ +

(
1− 1

γ

)
β(t) (13)

which is independent of the investment horizon when our money manager chooses to

be compared to a continuously rebalanced benchmark, in which case β(t) is set to be

constant. When the money manager chooses to have her performance be measured

against a (passive) buy-and-hold benchmark, her optimal portfolio weights, as give

by Equation (13), become rather time-varying, because the vector of weights on the

benchmark portfolio becomes a moving target, for a money manager who chooses ac-

tive investing. This optimal portfolio policy contains an actively managed component

and a herd component, the latter mimicking the benchmark against which the man-

ager’s performance is measured. Note that, in fact, the manager will tend to track

the benchmark more and more closely as her risk aversion increases. Clearly, when

γ > 1, if β(t) > ω∗(t), then the manager has an incentive to increase risk exposure.

On the contrary, if β(t) < ω∗(t), the manager has an incentive to herd and decrease

risk exposure. In either case, the dynamics of the optimal number of units held by

the fund manager on risky assets, N∗(t), is that of a process of unbounded variation,

where both unlimited leveraged and short positions are admissible. This assumption
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of continuously and unlimited trading, which has been common in delegated portfolio

management literature, is going to be relaxed in Section 2.3.

The solution to the derived utility of the terminal value of assets under manage-

ment when the fund manager chooses a continuously rebalanced exogenous benchmark

against which to measure performance, is given by:

J(X, t) =
X(t)1−γ

1− γ
exp

{
1

2γ

[
A1 −A3 − β(t)>A2

]
(1− γ)τ

}
(14)

where β is constant, A3 = Λ>σsβ(t), and τ = T − t. No such explicit solution exists

for the case in which the fund manager chooses to have his performance measured

relative to (value-weighted) buy-and-hold benchmark, because in that case β(t) is a

rather stochastic variable which distribution is unknown.

Alternative specifications are investigated in Basak, Pavlova, and Shapiro (2007),

in which flow-to-performance functions exhibit a local convexity and take the size of

the flows into and out of the manager’s fund to depend on the fund’s own performance

relative to the benchmark. However, given that the main results of this paper hold for

either of these specifications, I focus my analysis on the simpler and more intuitive case

where φ(T ) = 1/Y (T ).

2.3 The fund manager’s liquidity-constrained problem

In practice, fund managers face multiple constraints. Sudden liquidity dry-ups, like

the one that accompanied the 2007-08 meltdown in sub-prime lending, result in fund

managers finding themselves forced to sit on their hands for long periods of time, unable

to deal in any size in shares of even the more liquid large-cap companies.10 As a result,

managers loose control over their portfolio allocations, which potentially puts their

short-term performance records (not to mention their jobs) in jeopardy.

Thus, let the fund manager choose, at time t = 0, an m × 1 portfolio vector ω(0),

which she will want to revise later on if she chooses to actively invest. However, for

15



t > 0, take the size of the money manager’s trades each period, for a given cost, to be

out of her complete control, and restricted to lie in a bounded interval. Specifically,

and in parallel with Longstaff (2001), assume that the dynamics of the number of units

of risky assets that the money manager can hold each time, is given by:

dN(t) = η(t)dt (15)

where η(t) is an m × 1 vector, −∞ < −ψ(t) ≤ η(t) ≤ ψ(t) < ∞ and ψ(t) ≥ 0. This

specification captures the aspect of depth in financial markets, which I allow to be asset-

specific.11 I also allow it to be either constant or time-varying. In this context, the

dynamics of the value of a fund’s assets under management is given by the expression:

dW (t) = rW (t)dt+N(t)>diag[S(t)][σ>s Λdt+ σ>s dZ(t)] (16)

which will coincide with the budget constraint of an individual investor, in case we

leave out any explicit and implicit incentives provided to the fund manager by her

compensation scheme, risk appetite, or investment horizon. Thus, when liquidity is

constrained, the manager can find herself in a situation where portfolio allocations

are no longer under her control, and it can take a long time for her to “trade out of

mistakes” in less liquid assets, which may very well lead to bankruptcy. Therefore, in

order to guarantee the solvency of the fund, the manager has to abstain from taking

leveraged positions or short extensions in the available risky assets. Accordingly, as in

Longstaff (2001), in order for portfolio policies to be admissible, optimal controls ω(0)

and η(t) need to be such that 0 ≤ ω(t) ≤ 1, and 0 ≤ 1− ι>ω(t) ≤ 1, for all 0 ≤ t ≤ T .

2.3.1 Constant liquidity constraints

Consider first the case in which the liquidity constraint, as measured by the value of

the parameter ψ(t), is set to be constant, ψ(t) = α, for all 0 < t ≤ T . As a result, and
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because Equation (16) is now a function of W (t), N(t), and S(t), the problem of our

CRRA fund manager, who decides on an initial allocation of capital among m risky

assets, ω(0), and a money market account, 1 − ι>ω(0), as well as on the subsequent

revisions of that initial portfolio, as denoted by the m×1 vector of continuous controls

η(t), is stated as:

J(W,N, S, t) = sup
ω(0),η(t)

Et

{
[W (T )φ(T )]1−γ

1− γ

}
(17)

subject to the budget constraint (16). Under regularity conditions on the value func-

tion, absent benchmarking incentives, φ(T ) = 1, and suppressing time indicators, the

HJB PDE for this problem is given by:

Jt + JW rW + JW

[
N>diag[S]

(
σ>s Λ

)]
+

1

2
JWW

[
N>A4N

]
+

+JS

[
diag[S]

(
rι + σ>s Λ

)]
+

1

2
tr [JSSA4] + JWS [A4N ] + sup

η

{
η>JN

}
= 0

(18)

with terminal condition J(W,N, S, T ) = [1/(1 − γ)][W (T )φ(T )]1−γ , where JS and

JWS are 1 × m vectors, JN is an m × 1 vector, JSS is an m × m matrix, and A4 =

diag[S]
(
σ>s σs

)
diag[S]. In this case, because η(t) is constrained, the HJB PDE is opti-

mized by choosing η(t) so as to maximize the term η>JN for a given initial portfolio

vector ω(0). Therefore, the constrained money manager follows a bang-bang control

policy, according to which she chooses either η = α if JN > 0, or η = −α if JN < 0,

or η = 0 if JN = 0, as long as it is guaranteed that W (t) > 0, and the trading strate-

gies are admissible, meaning N0(t) ≥ 0, N(t) ≥ 0, and N0(t) + ι>N(t) > 0, for all

0 ≤ t ≤ T . Absent benchmarking incentives, the formal solution to the fund manager’s

derived utility is given by:

J(W,N, S, t;ω(0)) =
W (t)1−γ

1− γ
Et

[
exp

{∫ T

t
A5(u)du+

∫ T

t
A6(u)dZ(u)

}]
(19)
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where A5(t) = r(1− γ) + A6(t) (Λ− (1/2)σsω(t)), and A6(t) = (1− γ)ω(t)>σ>s . Note

that the portfolio weight vector ω(t) enters the derived utility function both linearly

and quadratically, which means that liquidity restrictions introduce a second layer of

mean-variance analysis into the manager’s problem.

This problem coincides with the problem of a liquidity-constrained investor, if we

also leave out the fund manager’s explicit incentives. In Section 3, I use numerical

techniques to solve this optimization problem, as well as the problem that accounts for

the manager’s benchmarking incentives, as discussed in Section 2.2.2. In particular,

I use the methodology suggested in Longstaff (2001). It consists of an application of

the Least-Squares Monte Carlo algorithm, proposed by Longstaff and Schwartz (2001).

Succinctly, it involves replacing the conditional expectation function in (19) by its

orthogonal projection on the space generated by a finite set of basis functions of the

values of the state variables that are part of the manager’s problem. Next, from that

explicit functional approximation, we can then solve for the optimal control variable

η(t), as defined above, for any given ω(0). Portfolio weights held in risky assets are

then easily retrieved, for each time t, for 0 ≤ t ≤ T , from the relation:

ωj(t) = ωj(0) +

∫ t

0

Sj(u)

W (u)
ηj(u)du (20)

where ηj(0) = 0, and j ∈ {1, 2, ...,m}.

2.3.2 Time-varying liquidity constraints

Existing literature provides evidence of liquidity timing by mutual fund managers (Cao,

Simin, and Wang (2007)), evidence that portfolio liquidity is actively managed and is

chosen as a function of the multiple liquidity needs of a fund (Massa and Phalippou

(2005)), and also evidence that fund managers tilt their holdings more heavily towards

liquid stocks when the market is expected to be more volatile (Huang (2008)). More-

over, according to Acharya and Pedersen (2005), liquid funds are likely to overperform
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in illiquid periods, and to underperform during liquid periods. What’s more, stock

market downturns have been showing that liquidity has a way of suddenly drying up

when it is needed the most, has commonality across assets (Chordia, Roll, and Sub-

rahmanyam (2000)), is related to volatility, and co-moves with the market.

In order to capture some of these aspects of market liquidity, including the “flight-

to-quality” incentive induced by the liquidity uncertainty in the risky assets’ market,

consider the following mean-reversion process:

dα(t) = K(π − α(t))dt+ σ>α dZ(t) (21)

where α(t) and π, are m×1 vectors, K is an m×m diagonal matrix of speed of reversion

parameters, and σα is a d×m matrix of loadings on the sources of uncertainty, generated

by the same d-dimensional geometric Brownian motion used in previous sections, Z(t).

I then allow the fund manager to be able to hedge against liquidity risk. Note, however,

that we need the stochastic liquidity parameter ψ(t), as defined above, to assume only

positive values, and to have a long-run equilibrium level denoted by θ. In this case, an

adequate mean-reverting model for ψ(t) can be represented by:

ψ(t) = exp

{
α(t)− 1

2

(
ι− 1

2

[
exp {−2Kt}K−1

]
Dα

)}
(22)

where ψ(t) is an m×1 vector, K−1 is the inverse matrix of K, and Dα is an m×1 vector

that contains the diagonal of the matrix
(
σ>α σα

)
. The long-run equilibrium level for

ψ(t) is related to the equilibrium level for α(t), and is given by the relation θ = exp{π}.

Here, like in Section 2.3.1, the money manager’s optimal portfolio strategy is to trade

as much as possible, whenever possible.
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3 Numerical results and discussion

Let the investor and the fund manager trade in two risky assets (m = 2), which may

have distinct degrees of liquidity. We could think of one of those risky assets to be

a liquid well-known publicly traded large-cap stock, while the other would be, for

instance, real estate or a small-cap stock from an emerging economy. I addition, let

uncertainty be generated by a two-dimensional Brownian motion (d = 2), such that

the price dynamics for these two risky assets is to include the following 2× 2 matrix of

loadings on the sources of risk:

σs =

σ11 σ21

σ12 σ22

 (23)

where the term σjk denotes the loading that asset j puts on the source of risk k. From

(23) we get that the variance of asset j is given by σ2j = σ2j1 + σ2j2 and the correlation

between the two assets is given by ρ = (σ11σ21 + σ12σ22) /(σ1σ2). In addition, let the

2× 1 vector of expected returns for this pair of risky assets be given by µ = rι+ σ>s Λ.

The numerical results in this section are based on 100,000 runs and 20 time steps per

year. Investment horizons Ti, for i ∈ {I,M}, are expressed in years. Initial prices of

assets (risky and riskless) are set to unity, such that Sj(0) = 1, where j ∈ {0, 1, 2}.

Furthermore, let the riskless money market account earn a constant riskless interest

rate r = 0.02. Bear in mind that, when looking at the results presented in the sections

that follow, we should focus on their comparative statics and predictions, not on the

reality of their assumptions.

3.1 Analysis of illiquidity and explicit incentives

The fund manager has an explicit incentive to administer the investor’s savings ac-

cording to her own attitude towards risk, her (usually shorter) investment horizon, and

her (eventually more favorable) participation and transaction costs. In this section, I
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assess the economic significance of these explicit incentives, in particular the case in

which the appetites for risk diverge between the investor and the manager, and to what

extent the presence of liquidity constraints affects its likely outcome.

3.1.1 The case of symmetric asset liquidity constraints

First, consider the case where the two risky assets are identical in every respect, includ-

ing their liquidity characteristics. Table 1 reports the optimal initial portfolio weights

for the unconstrained, and the constrained liquidity cases, ωuj (0), and ωcj(0), respec-

tively, for different values of Ti, ρ, σj , and γi, when in the absence of benchmarking

incentives (φ(T ) = 1). Take the two risky assets to be identical in every respect, so we

can isolate the effects of the misalignment of incentives between the investor and the

fund manager. Therefore, I set both risky assets to have the same expected return,

µj = 0.10, and to be non-tradeable (αj = 0), for t > 0, throughout the period Ti. In

terms of comparative statics, these results show that, under liquidity constraints, there

is “flight-to-quality” through which either the investor or the fund manager choose to

hold fewer of the riskier assets and more of the safest one. This lower total initial risk

exposure is due to hedging demands against the portfolio weights uncertainty measured

by CSVj , at t = Ti, which is the cross-sectional variation of the simulated portfolio

weights for each asset j and represents the extent to which portfolio weights are out

of the control of market participants when liquidity is constrained. As a result, under

liquidity constraints, market participants need to care about not only the mean and

variance of the risky assets, but also the mean and variance of the portfolio weights,

which are out of their complete control. For the set of input parameters I consider,

note that CSVj increases with σj for independent and negatively correlated risky assets,

while it decreases for positively correlated risky assets. Not unexpectedly, constrained

portfolio weights’ variation increases with the investment horizon. These simulated

variations range from .0105 (for ρ = 0.5, γi = 10, σj = 0.5, and Ti = 1), to .2258 (for

ρ = 0.5, γi = 1, σj = 0.5, and Ti = 1), while they are all null for the unconstrained
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portfolio weights, by construction. To trade-off the expected value of ωcj(t) with its vari-

ation is also part of the problem of a liquidity constrained market participant. Note

also that, when the unconstrained investor holds a leveraged position, the constrained

one restricts her portfolio weights to lie in the interval 0 ≤ ωc1(0)+ωc2(0) ≤ 1, to prevent

against insolvency. Because the wealth of the investor or the value of the fund’s as-

sets are processes bounded below by zero, and given that, under liquidity constraints,

returns of each risky asset cannot be replicated by those of the remaining assets in

the portfolio, endogenously the market participants cannot borrow to invest more in

risky assets, because the price of the illiquid assets can quickly fall and it would not be

possible to sell enough of these assets to guarantee positive terminal wealth. This one

dimension of liquidity is generally referred to as funding liquidity, which has to do with

the availability of credit or the ease with which the investor and the manager an borrow

or take on leverage. Note that this funding illiquidity was generated endogenously in

this model by the market illiquidity, which is the ease with which market participants

can transact, or the ability of markets to absorb large purchases or sales without much

effect on prices.

Lastly, Table 1 also reports the number of basis points we would have to discount

the prices of the identical risky assets so as to make the investor or the fund manager

indifferent between holding the constrained portfolio, and the constrained one. These

illiquidity discounts can also be thought of as the extra premiums that one would

require for holding an illiquid asset instead of a perfectly liquid one. For this set of

parameters, illiquidity discounts (ID) increase with Ti, and decrease with γi, ρ, and

σj . They range from 1.23 to 1,380.80 basis points. In particular, for Ti = 2, σj = 0.3,

ρ = 0, and γi = 1, the price of the identical risky assets would have to be discounted by

2.87% so as to compensate the investor for holding a buy-and-hold portfolio, instead

of one he or she could rebalance without restrictions. Not surprisingly, the largest

discounts occur when endogenous constraints on leverage are binding. Note also that,

when the risky assets’ volatility is decreased from σj = 0.5 to σj = 0.3, two opposite
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forces influence the value of the discounts for the lack of liquidity. On the one hand,

when assets’ volatility decreases, unconstrained initial portfolio weights increase and

borrowing constraints bind more quickly, which leads to increases in discounts in order

to compensate for funding illiquidity. On the other hand, a decrease in assets’ return

volatility also makes it less likely that constrained portfolios will deviate from the

unconstrained ones, which can lead to decreases in pricing discounts for illiquidity.

3.1.2 The case of asymmetric asset liquidity constraints

Consider now the case in which we relax the trading constraint on one of the assets. Let

the maximum number of shares of asset 2, that can be traded per year, be α2 = 0.10,

while keeping α1 = 0. Table 2 reports the optimal initial portfolio weights for the

unconstrained, and the constrained liquidity cases, ωuj (0), and ωcj(0), respectively, for

Ti = 1, σj = 0.5, and different values of ρ, and γi, where benchmarking incentives

are still left out (φ(T ) = 1). Because the risky assets are not identical in terms of

tradability anymore, in this table I show the optimal portfolio allocations, with and

without constraints, separately for each of the risky assets. The main result of this

table is that, when using two identical risky assets with different liquidity constraints,

the investor and the manager’s initial portfolios are likely to be skewed towards the

more illiquid asset, which is to say ωc1(0) > ωc2(0), and that over the investment period,

these portfolio allocations are likely to shift weights towards the less illiquid asset, as

we can see from the values of E[ωcj(T )] in Table 2. We know that if these market

participants were able to trade as much of these risky assets as desired, they would

choose to hold the unconstrained portfolio weights, as denoted by ωuj (0), which are

their most efficient allocations. However, under liquidity constraints, they need to

hedge against the possibility that, beyond time zero, they may not be able to hold

those efficient portfolio weights and at the same time they will not want to deviate too

much from them. One would expect that, after relaxing the liquidity constraint on asset

2 its initial portfolio weight could now be placed closer to the unconstrained weight,
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but that is not the case. There are hedging and diversification forces simultaneously

at play here in order to create this apparently counter-intuitive effect. if these market

participants were to be ale to trade only on one illiquid risky asset and one riskless

asset, and the liquidity constraint on that one illiquid asset was to be partially relaxed,

then we would find its portfolio weight to get closer to its unconstrained weight. It

is important to note, however, that in the one risky asset case, market participants

have no diversification concerns. In the two risky assets case presented in this paper

diversification does matter. Asset 1 is not allowed to trade beyond time zero, while

asset 2 can be traded after time zero, even if in limited amounts. The price of both

assets has a positive drift, which moves the mass of probability to the upside of the price

movement. Therefore, it becomes likely that after time zero the market participants

would want to increase their holdings of both assets, but given that they are restricted

from doing that for asset 1, it makes sense to hold more of asset 1 than of asset 2

to begin with, and to hold a portfolio weight on asset 1 that is as close as possible

to that they would choose in an unconstrained context. Moreover, combining the

facts that asset 2 is allowed to trade beyond time zero, the market participants are

likely to want to increase their holdings on asset 2 given its positive drift and, at the

same time, they need to diversify their portfolios in order to reduce their idiosyncratic

risks as much as possible, then they optimally choose to allocate relatively smaller

fractions of capital on asset 2 to start with, and to subsequently buildup those positions

over the investment period, this way expecting to minimize the costs that could arise

from poor diversification strategies. Another important aspect of this problem is that,

under liquidity constraints, market participants have concerns about portfolio weights’

uncertainty. When there are two risky assets with different liquidity constraints, one

should expect portfolio weight uncertainty to be higher for the more illiquid asset 1

than for asset 2, not only because of the price volatilities of assets 1 and 2, but also

because every time one trades asset 2, that affects the portfolio weight of asset 1. So,

one would expect the market participants to take advantage of their ability to trade
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asset 2 to somehow decrease the uncertainty of the portfolio weight on asset 1, and this

way increase their overall derived utilities.

Note that the ratio of the more liquid asset initial portfolio weight, ωc2(0), to the

one for the less liquid asset, ωc1(0), decreases monotonically with γi, meaning that, a

more risk averse investor or money manager optimally chooses to hold relatively more

of the less liquid asset. The ratio ωc2(0)/ωc1(0) can be thought of as a measure of the

level of portfolio liquidity, and Table 2 shows that the optimal initial portfolio liquidity

decreases, in general, with the correlation of assets’ returns. It also shows that these

initial optimal portfolios shift liquidity levels over the investment period. The variable

E[ωcj(T )] denotes the expected value of the constrained portfolio weights at time t = Ti.

Note that E[ωc2(T )] is generally larger than ωc2(0) by, approximately, α2 = 0.10, the

maximum number of shares of asset 2 that can be traded per year. Note also that the

cross-sectional variation of ωc2(T ), given by CSV2, is generally larger than the one we

discussed above for Table 1, where asset 2 could not be traded, while CSV1 remains of

the same kind as in Table 1. Thus, the constrained money manager, in trading off the

expected value of ωc2(T ) against its variation, does so by taking much smaller initial

positions and by trading asset 2, so as to keep the non-tradeable asset 1’s portfolio

weights’ expected value, and variation, under control. However, the optimal utility

levels that an investor/manager attains when actively trading asset 2, turn out to be

lower than those she would obtain under a passive buy-and-hold strategy as the one

shown in Table 1. Table 2 shows the variable CSVW , which denotes the cross-sectional

variation of the value of assets under management at t = Ti. Generally, these variations

of W (T ) are larger when trading for asset 2 is allowed than when it is not.

I cannot directly assign to each of these two assets the responsibility for the total

cost of the illiquidity effect. Therefore, in Table 2 I report instead the total illiquidity

cost (IC), which denotes the percent (measured in basis points) of the investor’s (or,

likewise, the manager’s) initial wealth, that one would have to give her in order to

compensate her for holding a liquidity constrained portfolio, instead of a portfolio that
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she could revise with no restrictions. Note that, as expected, IC increases when short-

selling constraints bind.

For brevity, I do not tabulate the simulation results for the case where, leaving

everything else constant, I let Ti = 2, or alternatively, I let σj = 0.3. Succinctly, for

longer investment horizons, initial portfolio weights decrease substantially, but illiquid-

ity costs, and portfolio value variations, increase drastically. For instance, when ρ = 0,

and γi = 10, then IC= 2.022%, CSV2 = 0.1254. If, alternatively, I let σj = 0.3, then

illiquidity costs increase dramatically for γi = 1, while they decrease for γi > 1, which

is the result of having endogenous borrowing constraints to bind. Differently, when I

keep all the same parameters used in Table 2 except that I also allow asset 1 to trade

during the investment period, with α1 = 0.10, then the assets return to identical, as in

Table 1, but optimal initial portfolio risk exposure decreases, while illiquidity discounts

rise.

3.1.3 The case of divergence in appetites for risk

We observe the SEC regularly advising investors to carefully read fund prospectus and

shareholder reports, to learn about its investment strategy and the risks it takes to

achieve its returns, so that these risks can be factored in and be tested for consistency

with the investor’s financial goals and risk tolerance. In fact, significant misalignments

of incentives can be derived from the extensive differences in appetites for risk between

investor and fund manager. Figure 1 reveals the shape of the shadow costs associ-

ated with this particular explicit incentive, as a function of both the investor’s and the

money manager’s risk appetites. Note that it is asymmetric, that the costs of dele-

gation are the lowest when the manager’s risk aversion parameter is equal to that of

the investor, and the highest when the manager exhibits lower risk aversion than the

investor. Table 3 reports these costs for investment horizons Ti = 1, and where input

parameter values are as those in Table 1. These costs are expressed as the percent

of wealth the suboptimal investor would be willing to give away in return for being
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allowed to follow the optimal strategy. Panel A reports the shadow costs for the un-

constrained liquidity case. Panel B reveals the results for the case where liquidity is

totally constrained (αj = 0). Not unexpectedly, when investor and manager have the

same attitude towards risk, given implicit incentives are left out, the money manager

is acting in the best interest of the investor and, as a result, no losses are derived from

this delegated portfolio relationship. However, in case of divergence in risk attitudes,

utility costs can become very significant. These costs range from 0.08% to 250.33%

of the investor’s initial wealth, for the unconstrained liquidity case, while they range

from 0% to 32.66% in the constrained liquidity case. Largest costs occur for higher

values of γI , and lower values of γM , which is what we should find, professional money

managers to be much less risk averse than fund investors. What is interesting to see

in these results is that utility costs become significantly lower when in the presence of

liquidity constraints. This has to do with the endogenous leveraging constraints, and

hedging demands, which restrain portfolio weights to fall into a closed limited set of

values, in order to prevent for bankruptcy. These costs significantly increase with the

investment horizon Ti. When the investment horizon increases to 2 years, utility losses

derived from the difference in appetites for risk between the investor and the money

manager, for the same parameter values as in Table 3, range from 0.17% (for γI = 5,

γM = 10, ρ = 0.5, and σj = 0.5) to 709.27% (for γI = 10, γM = 1, ρ = −0.5, and

σj = 0.3), in the unconstrained liquidity case, while they range from 0% (for γI = 1,

γM = 2, ρ = −0.5, and σj = 0.3) to 59.59% (for γI = 10, γM = 1, ρ = −0.5, and

σj = 0.5), in the constrained liquidity case.

For brevity, I do not tabulate either the results for Ti = 2, or the results for α1 = 0

and α2 = 0.10. When I let the maximum number of shares of asset 2, that can be

traded per year, be α2 = 0.10, then utility losses for a constrained investor whose risk

appetite may not be consistent with that of the fund manager to whom she delegates

the management of all her savings, are generally reduced. They range from 0.04% to

32.35%, when σj = 0.5. For instance, when γM = 10, γI = 2, ρ = 0, and σj = 0.5, and
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Ti = 1, the utility loss is equal to 0.63%, instead of 0.74%. These utility costs increase

for longer investment horizons and for lower asset return volatilities, everything else

constant.

3.1.4 Implications of time-varying liquidity constraints

Furthermore, I examine the implications of allowing marketability bounds to follow a

stochastic process like the one described by expression (22), in Section 2.3.2. Table

4 reports optimal initial investment policies that the investor, and the fund manager

alike, would choose, absent benchmarking incentives (φ(t) = 1), for the case where

asset 2 is allowed to trade throughout the year, and the following parameter values:

volatility of the marketability bound for asset 2, σα2 = 0.2, speed of reversion κ2 = 0.1

(where κh denotes the hth element of the diagonal matrix K), initial value ψ2(0) = 0.1

(annualized), long-run equilibrium levels θ2 = 0.1 (annualized), in Panel A, θ2 = 0.2,

in Panel B, σj = 0.5, and Ti = 1. Succinctly, these results suggest that illiquidity costs

slightly increase when we allow marketability to be stochastic, and increase more for

larger long-run equilibrium levels of liquidity. In addition, cross-sectional variations

for ωc2(T ) rise, while they remain roughly level for ωc1(T ). Furthermore, Table 4 also

reports estimates for the parameter λj2, which denotes the simulated average time-

series correlation coefficients between ωcj(t) and the stochastic ψ2(t), for j ∈ {1, 2}.

The values for these coefficients suggest that swings in asset 2’s marketability are

directly accompanied by ωcj(t), progressively more closely the more risk tolerant is the

investor/manager, and the larger the equilibrium level θ. Finally, on the whole, shadow

costs of explicit incentives, under stochastic liquidity, generally decrease.

3.2 Analysis of illiquidity and benchmarking incentives

In this section, I investigate the case in which the fund manager derives her utility not

just from the value of assets under management, but the ratio of this to the value of
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an exogenous benchmark. Assume that both investor and fund manager guide their

portfolio allocations by similar risk appetites, investment horizons, and participation

constraints.

3.2.1 Implications of benchmarking for buy-and-hold policies

Table 5 reports optimal initial portfolio weights a money manager would choose in case

her fund’s performance was to be measured against the performance of a continuously

rebalanced benchmark portfolio, Y (t), for βj(t) = 0.5, with a flow-to-performance

function φ(T ) = 1/Y (T ) (e.g. Browne (1999), Binsbergen, Brandt, and Koijen (2008)),

where risky assets are set to be identical in all respects, independent (ρ = 0), and

totally illiquid (αj = 0). I assume the benchmark portfolio weights are equal for

both of the risky assets so that the manager has equal incentives to load her optimal

allocations on the assets that are in the benchmark. One may ask whether or not it is

reasonable to assume that a performance benchmark can be composed of illiquid assets.

This assumption could be justified by the ex-ante fear of fund managers about market

crashes. In other words, one can assume ex-ante that some of the assets in a benchmark

can become illiquid, like financials and real estate during the current subprime crisis,

or the tech stocks in the internet crash. Panel A shows the results for the case where

TM = 1, while Panel B shows the results for TM = 2. Figure 2 illustrates how the

shape of the money manager’s derived utility function looks like, for a particular set of

parameters, and for φ(T ) = 1/Y (T ). Optimal initial portfolio weights are, therefore,

those that attain the maximum of this function. When compared to the results in Table

1, Table 5 shows that the money manager’s optimal initial portfolio policies have now

an actively managed component, and an herd component. It just confirms the result

of Equation (13), in Section 2.2.2, for the case where φ(T ) = 1/Y (T ). If we take the

difference between the optimal initial portfolio weights of Table 5, and those in Table

1, and then divide these differences by the latter values, we get a potential measure

of herding demands. From these computations, it becomes clear that, generally, for
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φ(T ) = 1/Y (T ), herding incentives become slightly larger for the constrained liquidity

case, when compared to the liquidity unconstrained one. These results show that a

more and more risk averse money manager tends to choose portfolio allocations that

converge more and more to the benchmark portfolio weights when φ(T ) = 1/Y (T ).

For longer investment horizons, these results get amplified.

Table 5 also shows that cross-sectional variations of the portfolio weights, CSVj ,

increase in the presence of benchmarking. It also shows the simulated cross-sectional

variations for the value of assets under management, and the benchmark portfolio

(βj(t) = 0.5), at the horizon TM , which are denoted by CSVW and CSVY , respec-

tively. These results show that, generally, CSVW < CSVY , given that the benchmark

is continuously rebalancing in order to preserve βj(t) = 0.5, while the risky assets in

the manager’s portfolio are totally illiquid, which makes it a buy-and-hold portfolio.

Nevertheless, the tracking error of Y , TEY , is relatively small. As a tracking error

measure, I use the square root of the non-central second moment of the deviations

between the money manager’s portfolio and benchmark returns, which is the measure

that is frequently used in practice. The tracking error for βj(t), denoted by TEβ,

appears to be significantly larger than TEY and decreasing with γM . As a result,

illiquidity discounts (ID) for our identical illiquid risky assets, come out dramatically

larger when compared to the results in Table 1, and which get amplified for longer

investment horizons. Finally, Table 5 also reports the simulated probabilities that the

money manager’s optimal portfolio values end up below that of the benchmark, by the

terminal date, TM , for a given optimal control ωcj(0), which are denoted by P[W < Y ].

Bear in mind that we normalized W (0) = Y (0) = 1. For brevity, I do not tabulate

the results I obtain for βj(t) = 0.2, in which case the benchmark has a money market

exposure of β0 = 0.6. Obviously, in this case, the cross-sectional variations of Y (T )

become significantly lower, where CSVY = 0.151 for TM = 1, and CSVY = 0.225 for

TM = 2. Moreover, the probabilities of under-performing the benchmark rise, despite

the reductions in TEY , and TEβ.
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Table 6 shows the results for the case in which the benchmark is value-weighted

or buy-and-hold. It shows that hedging demands for illiquidity, as measured by the

difference between ωu(0) and ωc(0), are smaller for the case in which the benchmark

is (value-weighted) buy-and-hold, when compared to those in which the benchmark

is (equally-weighted) continuously rebalanced. Compared to Table 5, note that in

Table 6 one extra column was added which includes information on CSVu, the cross-

sectional variation of the optimal unconstrained weights, which was null for a rebalanced

benchmark, but is now stochastic when using a buy-and-hold benchmark. Note that,

when using a buy-and-hold benchmark, the tracking errors for βj and Y decrease

significantly, as well as the value of the discounts for the lack of liquidity, ID(bp),

which almost vanish for the case of a very risk averse fund manager. Note that the

likelihood that the manager’s portfolio will under-perform, by the time horizon t = T ,

a buy-and-hold benchmark, is in general lower than that for the case in which the

benchmark is continuously rebalanced.

3.2.2 Shadow costs of benchmarking and symmetric liquidity constraints

Table 7 reports the results for the shadow costs of benchmarking incentives, for the

case of a continuously rebalanced benchmark, measured in percent points of the in-

vestor’s initial wealth, for the case of identical (σj = 0.5, µj = 0.1), independent, and

non-tradeable risky assets (ρ = 0, αj = 0). Figure 3 reveals the shape of this shadow

cost function, for a particular set of input parameters. Shadow costs range from 0%

to 188.76% in the unconstrained liquidity case, while ranging from 0% to 136.21% for

the constrained liquidity one. For γi = 10, a liquidity constrained investor, with an

investment horizon of 2 years, and βj = 0.5, requires 136.21% extra initial wealth in

order to be indifferent between delegating the management of her savings to the pro-

fessional money manager and directly accessing the financial markets to do it herself.

I also investigate whether a constrained professional money manager adjusts her port-

folio riskiness through taking on unsystematic rather than systematic risk. Thus, I let
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µ1 = r = 0.02, so that asset 1 does not command any risk premium, and set σ12 = 0,

so that asset 1 is solely driven by the source of risk Z1(t). Moreover, let β1 = 0 and

β2 = 1, such that the benchmark portfolio is given by asset 2 alone, and is solely driven

by the source of risk Z2(t), so that σ21 = 0, which also implies that ρ = 0. The results

obtained under this setup show that, the money manager optimally chooses to hold

asset 2 only, in her portfolio, which means that risk-taking happens only through sys-

tematic risk. This is the case either when both risky assets are non-tradeable (αj = 0),

or when we let asset 2 trade during the year (α1 = 0 and α2 = 0.20).

3.2.3 Implications of benchmarking and asymmetric liquidity constraints

Consider now the case where we let the maximum number of shares of asset 2, that

can be traded per year, be non-zero. In particular, let α2 = 0.20. Table 8 shows

that, not unexpectedly, in this case the optimal initial portfolio risk exposure (the

fraction of assets under management invested in risky assets) declines, when compared

to the results in Table 5. As the risk aversion parameter of the manager increases,

her incentives to herd and to track the exogenous benchmark also increase, and both

constrained and unconstrained optimal portfolio allocations tend to get closer to the

benchmark portfolio weights. One of the main results of this table is that, compared

to the direct investing case, here the illiquidity costs are higher, and increase with γM .

because the closer the manager wants to track the benchmark, the more she is going to

need to have less illiquid assets to do so. Therefore, the costs of not being able to trade

and track the benchmark necessarily increase. In other words, it is more costly to the

manager to have illiquid assets when she needs more desperately to track a benchmark

that includes those assets. The parameter CVW denotes the cross-sectional variation

of the simulated values of the assets under management, which increase with the risk

aversion parameter γM because the manager’s portfolio is tracking a benchmark that

is riskier that the Merton myopic portfolio allocations. Note that now it becomes

more likely that the money manager will underperform the benchmark, as given by
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the parameter P[W < Y ]. This result seems to relate with the empirical evidence

that actively managed funds have, on average, an inferior performance than that of

index funds (e.g. Gruber (1996)). These probabilities increase with the risk aversion

parameter, and that may be the case because the more risk averse the manager, the

higher are her incentives to track the benchmark very closely and, because of illiquidity,

the harder to do so.

Compared to Table 5, here in Table 8 the cross-sectional variations of ωc2(T ) slightly

increase, while CSVW slightly decreases. Furthermore, illiquidity costs significantly

increase when we allow asset 2 to trade, even for limited amounts, during the year.

Another important result of this table is that denoted by parameter TEβ, which denotes

the tracking error of the manager’s portfolio weights, given by ωcj(t), with respect to

the benchmark weights given by βj . According to these results, the manager’s portfolio

weights on the less illiquid asset 2 appear to be likely to tilt away from the benchmark

weights more than the portfolio weights of more illiquid assets. These tracking errors

can be viewed as a measure of risk-shifting by the fund manager. Therefore, we can

conclude from these results that the manager’s risk-shifting is more likely to happen

using less illiquid assets.

I also include in this Table 8 estimates of the parameters π and ν, which denote the

simulated time-series correlation coefficients of the portfolio liquidity (ratio of ωc2(t) to

ωc1(t)), and the portfolio risk exposure (ωc2(t) +ωc1(t)), respectively, with respect to the

ratio of the assets under management to the benchmark portfolio (W(t)/Y(t)). Note

that π switches from a negative figure to a positive one, as the money manager becomes

more conservative. A negative π means that, when the performance of the manager’s

portfolio deteriorates relative to the benchmark, then on average, contemporaneously,

the manager optimally chooses to distort her portfolio composition towards the more

liquid risky asset, which occurs for the more risk loving managers. These results would

be consistent with risk-shifting behavior to take place in the more liquid asset class.

Note, however, that these correlations don’t appear specially strong. The negative
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signs of ν all over Table 8 suggest that increasing fund distress implies escalating risk

exposure. Shadow costs of benchmarking incentives to a liquidity constrained investor,

when asset 2 is tradeable, αj = 0.20, range from 0% to 25.87% of her initial wealth.

4 Conclusions

This study was limited in several ways. For ease of exposition, I confine attention to

CRRA preferences, continuously rebalanced benchmarks, and totally passive investors.

Nevertheless, it suggests that asset illiquidity can significantly affect money managers’

risk-shifting incentives as well as the investors’ utility costs of misaligned objectives.

The main results of this paper also suggest that the value of liquidity is likely to increase

with the rise of financial intermediation, and that we should expect the investor’s

propensity to delegate portfolio decisions to a fund manager to be higher in the presence

of illiquid assets and in more illiquid periods.

It would be useful in future research to include a more complicated preference struc-

ture in this analysis, and allowing the investor to endogenously decide how much of

her savings to hold in the money market account and how much to invest in the man-

aged portfolio, which would allow the investor to trade around incentive misalignments

and improve her welfare results. Other interesting extensions could focus on deriving

optimal performance benchmarks that would account for asset illiquidity and could

then be used to better align incentives between investors and money managers in more

illiquid markets. Future work could also focus on studying the implications of time-

varying investment opportunities and their interaction with asset illiquidity, as well as

on the sensitivity of the results presented here to alternative measures of asset liquidity.

Examples of those alternative measures of liquidity include the bid-ask spread (Ami-

hud and Mendelson (1986)), the price impact of trade (Brennan and Subrahmanyam

(1996)), turnover (Datar, Naik, and Radcliffe (1998)), trading volume (Brennan, Chor-

dia, and Subrahmanyam (1998)), and transaction costs (Liu and Loewenstein (2002),
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Liu (2004), Dai and Yi (2006), Jang, Koo, Liu, and Loewenstein (2007), and Dai, Jin,

and Liu (2008)). Lastly, given that only partial equilibrium results are presented here,

they should be taken only as suggestive. Future research could focus on assessing the

asset pricing implications of liquidity restrictions in a delegated portfolio general equi-

librium setting. Examples of related recent literature on this topic are Longstaff (2005)

and Leippold and Rohner (2008).
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Notes

1 Chevalier and Ellison (1999) analyze the incentives of mutual fund managers in
terms of their career concerns, and find that younger managers are both more likely to
be fired for poor performance and (as a result) take on less unsystematic risk than the
older managers

2 See Brunnermeier and Pedersen (2008) for a notable discussion on the mutually
reinforcing effects of market liquidity and funding liquidity.

3 Note that, under liquidity constraints, portfolio weights become random variables,
and the manager now needs to care about not only the mean and variance of the risky
assets, but also the mean and variance of the portfolio weights, which are out of her
control.

4 Huang, Sialm, and Zhang (2008) show that funds that shift risk end up per-
forming worse, which is consistent with risk-shifting being driven by money managers’
opportunistic behavior, rather than their active portfolio management ability.

5 In a more general model, the investor could be allowed to dynamically choose how
much of her portfolio to hold directly in a money market account and how much to
hold indirectly on risky assets through the managed portfolios of mutual funds, pension
funds, and the like. I am grateful to Joshua Shemesh for this insight.

6 See Basak and Makarov (2008) for an analysis of the dynamic portfolio choice
implications of strategic interaction among money managers.

7 The benchmark portfolio Y (t) could be interpreted as a constraint in the contract
decided between the investor and the fund manager at the beginning of the investment
period.

8 In Section 3, for comparison purposes, I also present results for the simpler case
of logarithmic preferences (CRRA utility with γ = 1).

9 In a more general model, the investment horizon would not coincide with the
fund flows date (e.g. Basak and Makarov (2008)), in which case fund flows would be
tradeable after the flow date, and φ(t < T ) would then enter the problem through the
budget constraint, and not directly through the utility function.

10 See Brunnermeier (2008) and Allen and Carletti (2008) for excellent accounts of
the sequence of events that have mapped out the 2007-08 financial crisis, focusing on
a wide range of factors, among which the typical fragility of market liquidity.

11 It may also be the case that the fund manager has access to the financial markets
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in more favorable terms than the investor. In a more general setting, this situation
could be captured by allowing liquidity constraints to be investor-specific and more
relaxed to the fund manager.
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Table 1: Optimal buy-and-hold (αj = 0) investment policies and illiquidity discounts, with
no influence of either explicit or implicit incentives. Illiquidity discount (ID) is defined as the
number of basis points the price of the identical risky assets would have to be reduced in order
to make the investor/manager indifferent between holding the liquidity-constrained (ωcj(0)) and
the liquidity-unconstrained (ωuj (0)) portfolios. CSVj denotes the cross-sectional volatility of the
simulated constrained portfolio weights, at the terminal date, ωcj(T ), for j ∈ {1, 2}. Parameters
σj , ρ, and RA(γi), denote the return volatility of the risky assets, the correlation coefficient
between the risky assets’ returns, and the coefficient of relative risk aversion, respectively.

Panel A: Constrained liquidity, αj = 0, Ti=1

σj = 0.3 σj = 0.5

ρ RA(γi) ωuj (0) ωcj(0) CSVj ID(bp) ωuj (0) ωcj(0) CSVj ID(bp)

-0.5 1 1.778 0.500 0.1197 704.03 0.640 0.500 0.1838 83.99
2 0.889 0.500 0.1197 149.17 0.320 0.268 0.1111 44.48
5 0.356 0.328 0.0833 20.29 0.128 0.103 0.0499 19.34
10 0.178 0.165 0.0464 10.71 0.064 0.050 0.0261 9.99

0 1 0.889 0.500 0.0996 136.55 0.320 0.305 0.1075 12.82
2 0.444 0.440 0.0891 5.73 0.160 0.153 0.0649 8.93
5 0.178 0.175 0.0444 3.54 0.064 0.060 0.0298 4.39
10 0.089 0.085 0.0243 2.15 0.032 0.030 0.0158 2.40

0.5 1 0.593 0.500 0.0718 11.70 0.213 0.210 0.0713 5.76
2 0.296 0.293 0.0527 1.61 0.107 0.100 0.0430 4.92
5 0.119 0.115 0.0291 1.92 0.043 0.040 0.0199 2.61
10 0.059 0.058 0.0164 1.23 0.021 0.020 0.0105 1.41

Panel B: Constrained liquidity, αj = 0, Ti=2

σj = 0.3 σj = 0.5

ρ RA(γi) ωuj (0) ωcj(0) CSVj ID(bp) ωuj (0) ωcj(0) CSVj ID(bp)

-0.5 1 1.778 0.500 0.1620 1,380.80 0.640 0.473 0.2258 285.84
2 0.889 0.500 0.1620 336.82 0.320 0.230 0.1351 158.06
5 0.356 0.313 0.1124 76.34 0.128 0.088 0.0645 68.84
10 0.178 0.155 0.0645 40.49 0.064 0.043 0.0347 35.52

0 1 0.889 0.500 0.1364 286.80 0.320 0.293 0.1419 63.84
2 0.444 0.430 0.1209 29.70 0.160 0.140 0.0873 41.65
5 0.178 0.170 0.0634 16.78 0.064 0.053 0.0405 19.67
10 0.089 0.083 0.0356 9.80 0.032 0.025 0.0210 10.43

0.5 1 0.593 0.500 0.0999 29.83 0.213 0.205 0.0984 28.23
2 0.296 0.298 0.0754 9.41 0.107 0.095 0.0605 21.92
5 0.119 0.115 0.0431 8.38 0.043 0.038 0.0292 10.96
10 0.059 0.058 0.0250 5.24 0.021 0.018 0.0149 5.86
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Table 2: Optimal investment policies and costs of constant illiquidity, with no influence of
implicit incentives (Y (t) = 1), when asset 1 is non-tradeable (α1 = 0), and asset 2 has limited
trading per year (α2 = 0.1), σj = 0.5, and Ti = 1. Illiquidity cost (IC) is defined as the amount
of initial wealth (in basis points) that we would have to give the investor/manager in order to
make her indifferent between holding the liquidity constrained and the liquidity unconstrained
portfolios. CSVW denotes the cross-sectional volatility of the simulated value of assets under
management, under liquidity constraints, at the terminal date, W(T). The variable E[ωcj(T )]
denotes the expected value of the constrained portfolio weight for asset j, at the terminal date.

ρ RA(γi) IC(bp) CSVW Asset j ωuj (0) ωcj(0) E[ωcj(T )] CSVj

1 84.70 0.3195 1 0.640 0.500 0.500 0.1838
2 0.640 0.500 0.500 0.1838

2 52.27 0.1660 1 0.320 0.276 0.279 0.1100
-0.5 2 0.320 0.184 0.287 0.1230

5 28.61 0.0671 1 0.128 0.105 0.110 0.0505
2 0.128 0.045 0.147 0.0693

10 23.63 0.0389 1 0.064 0.054 0.057 0.0278
2 0.064 0.006 0.106 0.0493

1 16.18 0.2583 1 0.320 0.285 0.284 0.1039
2 0.320 0.285 0.376 0.1271

2 12.45 0.1266 1 0.160 0.150 0.154 0.0641
0 2 0.160 0.100 0.200 0.0837

5 11.58 0.0508 1 0.064 0.059 0.062 0.0291
2 0.064 0.007 0.107 0.0501

10 17.70 0.0368 1 0.032 0.030 0.032 0.0157
2 0.032 0 0.097 0.0435

1 7.82 0.2132 1 0.213 0.222 0.222 0.0745
2 0.213 0.148 0.244 0.0842

2 8.30 0.1027 1 0.107 0.105 0.108 0.0450
0.5 2 0.107 0.045 0.145 0.0606

5 9.49 0.0479 1 0.043 0.040 0.042 0.0199
2 0.043 0 0.097 0.0440

10 19.88 0.0352 1 0.021 0.010 0.011 0.0053
2 0.021 0 0.098 0.0430
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Table 3: Shadow costs of explicit incentives derived from differences in risk appetites between
the investor and the money manager, where Ti = 1. Shadow cost is defined as the additional
percentage of the investor’s initial wealth that we would have to give her in order to make
her indifferent between delegating the administration of her savings to a money manager, and
administering those savings herself. Using standard working practice, these utility losses are
computed via taking the ratio of the annualized certainty equivalent rates of return, achieved
under the investor’s portfolio delegated and centralized problems, after which I subtract one
and multiply by 100 to express the losses in percent points per year. Parameter values are as
in Table 1.

Panel A: Unconstrained liquidity, Ti=1

γI = 1 γI = 2 γI = 5 γI = 10

ρ σj = 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

-0.5 0 0 7.78 2.72 64.60 18.40 250.33 55.13
γM = 1 0 0 0 3.67 1.30 26.20 8.54 82.92 22.96

0.5 0 0 2.41 0.86 16.47 5.57 46.52 14.54

-0.5 3.51 1.22 0 0 6.79 2.41 27.12 8.71
γM = 2 0 1.77 0.63 0 0 3.26 1.17 12.12 4.17

0.5 1.19 0.42 0 0 2.15 0.77 7.83 2.74

-0.5 9.38 3.24 2.55 0.89 0 0 1.46 0.54
γM = 5 0 4.63 1.63 1.28 0.45 0 0 0.72 0.26

0.5 3.07 1.09 0.86 0.31 0 0 0.47 0.17

-0.5 12.05 4.14 4.61 1.61 0.70 0.24 0 0
γM = 10 0 5.90 2.08 2.29 0.81 0.35 0.12 0 0

0.5 3.91 1.39 1.53 0.54 0.24 0.08 0 0

Panel B: Constrained liquidity, αj = 0, Ti=1

γI = 1 γI = 2 γI = 5 γI = 10

ρ σj = 0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

-0.5 0 0 0 1.62 0.69 11.70 5.50 32.66
γM = 1 0 0 0 0.07 1.17 4.96 7.06 16.95 16.28

0.5 0 0 1.13 0.81 10.37 4.62 29.93 10.12

-0.5 0 1.00 0 0 0.69 1.80 5.50 5.82
γM = 2 0 0.44 0.59 0 0 3.19 1.03 11.46 3.24

0.5 1.09 0.43 0 0 1.93 0.61 6.59 1.97

-0.5 2.04 2.71 1.35 0.74 0 0 1.21 0.35
γM = 5 0 3.20 1.54 1.24 0.41 0 0 0.66 0.23

0.5 2.97 1.06 0.86 0.28 0 0 0.40 0.15

-0.5 4.31 3.46 3.19 1.34 0.04 0.20 0 0
γM = 10 0 4.48 1.96 2.26 0.74 0.35 0.10 0 0

0.5 3.79 1.34 1.51 0.51 0.23 0.07 0 0
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Table 4: Optimal investment policies and costs of time-varying illiquidity, with no influence
of implicit incentives (Y (t) = 1), for independent risky assets (ρ = 0), where asset 1 is non-
tradeable (α1(t) = 0), and asset 2 has limited time-varying trading per year, for a liquidity
volatility parameter value of σα2 = 0.2, speed of reversion K2 = 0.1, initial level ψ2(0) = 0.1
(annualized), long-run equilibrium level θ2 = 0.1 (annualized), σj = 0.5, and Ti = 1. The
parameter λj2 denotes the simulated average time-series correlation between ωcj(t) and the
stochastic liquidity boundary ψ2(t), for j ∈ {1, 2}.

Panel A: Stochastic constrained liquidity, θ2 = 0.1

RA(γi) IC(bp) CSVW Asset j ωuj (0) ωcj(0) λj2 E[ωcj(T )] CSVj

1 17.00 0.2580 1 0.320 0.280 -0.3646 0.282 0.1033
2 0.320 0.280 0.8221 0.377 0.1340

2 13.59 0.1283 1 0.160 0.150 -0.1551 0.154 0.0641
2 0.160 0.100 0.6649 0.205 0.0930

5 13.46 0.0508 1 0.064 0.054 -0.0556 0.057 0.0271
2 0.064 0.006 0.2548 0.111 0.0603

10 20.65 0.0386 1 0.032 0.030 -0.0476 0.032 0.0157
2 0.032 0 0.2276 0.102 0.0525

Panel B: Stochastic constrained liquidity, θ2 = 0.2

RA(γi) IC(bp) CSVW Asset j ωuj (0) ωcj(0) λj2 E[ωcj(T )] CSVj

1 17.18 0.2586 1 0.320 0.280 -0.3452 0.282 0.1034
2 0.320 0.280 0.9035 0.380 0.1352

2 13.89 0.1289 1 0.160 0.150 -0.1554 0.154 0.0641
2 0.160 0.100 0.8528 0.208 0.0946

5 13.99 0.0516 1 0.064 0.054 -0.0645 0.057 0.0271
2 0.064 0.006 0.5012 0.115 0.0622

10 22.06 0.0394 1 0.032 0.030 -0.0572 0.032 0.0157
2 0.032 0 0.4760 0.105 0.0543
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Table 5: Optimal investment policies and illiquidity discounts, under the influence of bench-
marking incentives (φ(T ) = 1/Y (T )), for a continuously rebalancing benchmark with βj = 0.5,
and independent (ρ = 0) non-tradeable (αj = 0) risky assets. Illiquidity discounts are defined
as the number of basis points the price of the identical risky assets would have to be reduced
in order to make the manager indifferent between holding the liquidity constrained and the
liquidity unconstrained portfolios. CSVj denotes the cross-sectional volatility of the simulated
constrained portfolio weights, at the terminal date, ωcj(T ), for j ∈ {1, 2}.

Panel A: Rebalancing Benchmark with βj = 0.5, αj = 0, TM=1, ρ = 0 (CSVY =0.404)

RA(γM ) ωuj (0) ωcj(0) CSVj TEβ ID(bp) CSVW TEY P[W<Y]

1 0.320 0.305 0.1075 19.71 12.82 0.2543 3.09 0.5173
2 0.410 0.395 0.1289 12.60 39.27 0.3294 2.03 0.5344
5 0.464 0.450 0.1424 10.07 108.95 0.3752 1.56 0.5864

Panel B: Rebalancing Benchmark with βj = 0.5, αj = 0, TM=2, ρ = 0 (CSVY =0.655)

RA(γM ) ωuj (0) ωcj(0) CSVj TEβ ID(bp) CSVW TEY P[W<Y]

1 0.320 0.290 0.1412 22.01 63.84 0.4049 3.55 0.5264
2 0.410 0.385 0.1685 15.42 156.63 0.5375 2.54 0.5503
5 0.464 0.445 0.1862 13.40 360.01 0.6213 2.12 0.6099
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Table 6: Optimal investment policies and illiquidity discounts, under the influence of bench-
marking incentives, where φ(T ) = 1/Y (T ), for a buy-and-hold benchmark with βj = 0.5, and
independent (ρ = 0) non-tradeable (αj = 0) risky assets. Tracking errors (TE) are measured as
the square root of the non-central second moment of the deviations between the money man-
ager’s portfolio weights/returns and the benchmark weights/returns. The simulated probabili-
ties that the money manager’s optimal portfolio values end up below those of the benchmark,
by the terminal date, are represented by P[W<Y].

Buy-and-Hold Benchmark with βi = 0.5, αi = 0, TM=1, ρ = 0 (CSVY =0.4169)

RA(γM ) ωui (0) ωci (0) CSVu CSVc TEβ ID(bp) CSVW TEY P[W<Y]

1 0.320 0.305 0.1021 0.1075 19.27 2.24 0.2543 2.97 0.5147
2 0.410 0.405 0.1309 0.1313 9.50 2.05 0.3377 1.46 0.5147
5 0.464 0.465 0.1481 0.1464 3.54 1.13 0.3878 0.55 0.5146
10 0.482 0.480 0.1538 0.1505 2.03 0.63 0.4003 0.31 0.5146
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Table 7: Shadow costs of benchmarking incentives (φ(T ) = 1/Y (T )), when the benchmark is
continuously rebalanced, the risky assets are independent (ρ = 0) and non-tradeable (αj = 0).
These shadows costs are measured in percentage points, for different investment horizons Ti,
and different benchmark portfolio weights βj .

Panel A: Unconstrained liquidity

βj = 0.2 βj = 0.5

RA(γi) Ti = 1 2 1 2

1 0 0 0 0
2 0.51 1.02 3.20 6.50
5 3.26 6.64 22.25 50.31
10 8.39 17.78 67.11 188.76

Panel B: Constrained liquidity, αj = 0

βj = 0.2 βj = 0.5

RA(γi) Ti = 1 2 1 2

1 0 0 0 0
2 0.44 0.85 3.00 5.82
5 2.81 4.82 20.32 41.28
10 6.44 10.71 58.25 136.21
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Table 8: Optimal investment policies and costs of constant illiquidity, under the influence
of benchmarking incentives (φ(T ) = 1/Y (T )), for a continuously rebalanced benchmark with
βj = 0.5, when asset 1 is non-tradeable (α1 = 0), and asset 2 has limited trading per year
(α2 = 0.2), σj = 0.5, and Ti = 1. Illiquidity cost (IC) is defined as the additional amount
of initial wealth (in basis points) that we would have to give the fund manager in order to
make her indifferent between holding the liquidity constrained and the liquidity unconstrained
portfolios. CSVY denotes the cross-sectional volatility of the simulated value of the rebalanced
benchmark. These panels consider the case of independent risky assets (ρ = 0), which results in
CSVY = 0.4040. Each panel also includes values for the parameters π and ν, which denote the
simulated time-series correlation coefficients of the portfolio liquidity (ratio of ωc2(t) to ωc1(t)),
and the portfolio risk exposure (ωc2(t) + ωc1(t)), respectively, with the ratio of the assets under
management to the benchmark portfolio (W(t)/Y(t)).

γM IC(bp) CSVW TEY P[W<Y] j ωuj (0) ωcj(0) E[ωcj(T )] CSVj TEβ

1 19.32 0.2572 3.22 0.5215 1 0.320 0.306 0.306 0.1073 19.63
2 0.320 0.204 0.395 0.1409 21.57

2 54.18 0.3318 2.21 0.5367 1 0.410 0.414 0.411 0.1293 11.29
2 0.410 0.276 0.465 0.1575 16.39

5 138.21 0.4061 1.51 0.6476 1 0.464 0.455 0.457 0.1514 10.28
2 0.464 0.455 0.539 0.1529 10.28

γM = 1 2 5 10

π -0.0660 -0.1923 0.1626 0.1376
ν -0.3804 -0.2620 -0.2571 -0.2507
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Figure 1: Shadow cost derived from explicit incentives only, due to differences in risk
appetites between the investor and the fund manager. These costs are measured as
factors we would have to multiply the investor’s initial wealth with, in order to com-
pensate her for the effect of suboptimal policies derived from portfolio delegation. This
is also the case of identical, independent, and non-tradeable (αj = 0) risky assets,
where r = 0.02, µj = 0.10, and σj = 0.5, for j ∈ {1, 2}, and Ti = 1.
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Figure 2: Derived utility of terminal wealth function, for a CRRA manager, with
γM = 2, whose performance is measured relative to a benchmark, with βj = 0.5, and
where the flow-to-performance specification is given by: φ(T ) = 1/Y (T ). This manager
chooses, at time t = 0, to hold ω1(0) and ω2(0), on risky assets 1 and 2, respectively,
and these initial allocations cannot be revised for t > 0 (αj = 0). The values on
the axis for initial holdings of risky asset 1 are fractions of the initial total portfolio
risky exposure (ω1(0)+ω2(0)). These are identical and independent risky assets, where
r = 0.02, µj = 0.10, and σj = 0.5, for j ∈ {1, 2}.
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Figure 3: Shadow cost (vertical axis) derived from explicit and benchmarking (implicit)
incentives, together, due to portfolio delegation, as a function of the risk aversion
parameters for the investor and the fund manager (horizontal axes). This is the case of
a manager whose performance is measured relative to a benchmark Y (t), with βj = 0.5,
and where the fund flow-to-performance specification is given by: φ(T ) = 1/Y (T ).
These costs are measured as factors we would have to multiply the investor’s initial
wealth with, in order to compensate her for the effect of suboptimal policies derived
from portfolio delegation. This is also the case of identical, independent, and non-
tradeable (αj = 0) risky assets, where r = 0.02, µj = 0.10, and σj = 0.5, for j ∈ {1, 2},
and Ti = 1.

51


	Introduction
	Model setup
	The financial market
	The fund manager's liquidity-unconstrained problem
	Optimal portfolio policies without benchmarking incentives
	Optimal portfolio policies with benchmarking incentives

	The fund manager's liquidity-constrained problem
	Constant liquidity constraints
	Time-varying liquidity constraints


	Numerical results and discussion
	Analysis of illiquidity and explicit incentives
	The case of symmetric asset liquidity constraints
	The case of asymmetric asset liquidity constraints
	The case of divergence in appetites for risk
	Implications of time-varying liquidity constraints

	Analysis of illiquidity and benchmarking incentives
	Implications of benchmarking for buy-and-hold policies
	Shadow costs of benchmarking and symmetric liquidity constraints
	Implications of benchmarking and asymmetric liquidity constraints


	Conclusions

